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/ ABSTRACT

---The performance characteristics of the generalized
influence function method for the approximate computation of
the amplitudes of the eigenfunctions of the equations of
plane elasticity in the vicinity of sharp reentrant corners
were evaluated. The eigenfunctions satisfy the equations of
equilibrium, compatibility and stress-strain laws and the
free-free boundary conditions at reentrant corners. The
amplitudes of the eigenfunctions are called the generalized

• .stress intensity factors.

It is concluded that the generalized stress intensity
factors can be computed to within one percent relative error
with small computational effort. Therefore the essential
characteristics of the elastic stress field in the neighbor-
hood of reentrant corners can be determined with great
precision. This computational technology is essential for

" the development of theories of crack initiation in metals
and composites. < - , •
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.N TREATMENT OF GEOMETRIC SINGULARITIES WITH

THE p-VERSION OF THE FINITE ELEMENT METHOD

1. INTRODUCTION

In the displacement formulation of the finite element

method the solution minimizes the strain energy of the

error for the given finite element mesh and polynomial

degree of elements. It has been shown that this is closely

related to minimizing the root-mean-square error in stress

El]. In engineering computations, however, the strain energy

and the root-mean-square error in stress are not the quanti-

ties of primary interest. The goal of computation is usually

to estimate within a reasonably small margin of error, some

functional of the displacement field, such as stress at a

point, stress intensity factors etc. These quantities are

usually computed from the finite element solution directly,

without taking into account that the essential character of

the solution is known a priori. For example, stresses at a

point within an element are computed as some linear

*The numbers in brackets in the text indicate references
in the Bibliography.
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combination of the derivatives of the shape functions at

the point. Stress intensity factors for crack problems

are computed from the strain energy release rate, which is

obtained by computing the strain energy for two bodies with

slightly different crack sizes. Although the method per-

forms well when used in conjunction with the p-version of

the finite element method [2], the stress intensity factors

for mixed mode problems cannot be obtained separately by

this method.

In three related papers Babuska and Miller introduced

new techniques that permit the extraction of various

functionals of the displacements, such as pointwise

displacements, stresses and stress intensity factors, with

greater reliability and accuracy than was previously

possible [3, 4, 5]. The main idea of the new extraction

techniques is that not only the finite element solution

but also the essential characteristics of the exact

solution are utilized in making the computations. This

requires a modest amount of extra effort but a great deal

is gained in accuracy and reliability. One of the extrac-

tion techniques is the generalized influence function

method for the computation of stress intensity factors.

By stress intensity factors we mean not only the stress

intensity factors defined in linear elastic fracture
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mechanics but also the analogous quantities associated

with any sharp reentrant corner.

Stress singularities in the solution of elasticity

problems can be caused by loading, sudden changes in the

boundary conditions or material properties and reentrant

corners. A typical corner detail is shown in figure 1.1.

This investigation is concerned with stress singularities

at reentrant corners with free-free boundary conditions

on the sides of the angle.

In the neighborhood of the corner the solution vector

can be written in terms of polar coordinates centered on

the corner in the following form:

K.

u - Z K. r F. (O) + G(r, 6) (1.1)

where u - (u I , u2, F and G are functions that are smoother
<C.

than r Fi(8) and the <. 's are positive numbers. The

amplitudes Ki are the generalized stress intensity factors.

The eigenvalues Ki depend on the angle 6, the boundary

conditions imposed on the two sides of the angle, and

Poisson's ratio. The eigenfunction F. (9) depends on the1

angle S, the corresponding eigenvalue <. and the elastic

constants. A typical stress component is of the form:

<.-(,' - K. r 1 f(e) g(r, -) (1.2)

i.



-4-

Applie r

P 4"Constrained X11u1
Boundary (e.g. u,: u?= 0)

Figure 1. 1

Typical corner detail in plane elastic problems
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It can be seen that for values of K. < 1 th2 stressesi

become infinite at the corner.

A special case is the case of a crack (angle 8

equal to 360 degrees). The solution of crack problems

and the study of the conditions under which cracks

propogate is the subject of linear elastic fracture

mechanics. Its applicability rests on the satisfaction

of a criterion known as small scale yielding. This means

that any nonlinearities are confined to a region which is

small in comparison with the size of the body and is com-

pletely surrounded by a region in which the solution of the

elasticity problem is an adequate representation of the real

response of the material. The elastic stress field and

strain field in the neighborhood of the singularity can be

written respectively as:

-.. a.. (6) + higher order terms (1.3)

.. K ..() + higher order terms (1.4)
2J /2T7r 1]

where K is the stress intensity factor and cij. (6),

C ij(8) are smooth functions of 6. When the restrictions

stated in the preceding paragraph are met, these fields are

the same for any crack, regardless of the overall geometry

and applied loading. The stress and deformation fields

ahead of the crack tip for a purely symmetric or
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antisymmetric crack configuration are then characterized

by a single parameter, the stress intensity factor K.

Linear elastic fracture mechanics is based on the obser-

vation that crack growth is controlled by the parameter

K. A pre-cracked specimen in which the elastic field is

known is tested under monotonic loading conditions until

the first occurence of crack propagation is observed.

At this point the stress intensity factor is said to have

a critical value which is usually denoted by Kc . This

phenomenological approach ignores the micromechanisms of

void nucleation ahead of the crack tip and the way in

which these voids are joined to increase the cragk length,

yet it has been highly successful in giving reliable

answers to important practical questions such as the

expected life of structures under existing flaws, the

maximum flaw size that quality control is allowed to miss

and maximum allowable time intervals between inspections.

The critical stress intensity factor K in mode I under
IC

plane strain conditions is termed fracture toughness and

is accepted as the material constant that characterizes

material resistance to fracture.

This approach has been extended to the nonlinear

regime. The J-integral is the intensity of the Aingular

nonlinear elastic strain field in the neighborhood of the



of the crack tip (HRR field). In this sense J ICis

analogous to K ICbut of course the small scale yielding

condition is now replaced by the "J-dominance" condition,

which means that the area ahead of the tip, in which

intense nonlinearities deviating from deformation theory

of plasticity take place, is relatively small and is

completely surrounded by a region in which the singular

nonlinear elastic field represents adequately the real

material response [6, 7, 8, 9, 10).

Despite its great success, linear elastic fracture

mechanics is difficult to apply to structures of compli-

cated geometry. The presence of a large number of points

where cracks are apt to occur would require a large

number of analyses to be performed with a hypothetical

crack at each of these points. On the other hand, the

designer's intent is that the structure should spend most

of its life in the crack initiation stage rather than in

the crack propagation stage. The ability to formulate

crack initiation criteria based on linear elasticity

could open the way to more rational design procedures.

Although the singular nature of elasticity solutions

in the neighborhood of reentrant corners was reported

in the engineering literature as early as 1933 [11j,

21. . . . . . . . . . . . .



and the 1952 paper by M. L. Williams [12] gave the strength-

of these singularities for the various angles, no attempt

was previously made to assign any physical significance to

the amplitudes of the stress singular terms (except in

linear elastic fracture mechanics) and no numerical method

existpd for the computation of these quantities. Based on

the work presented herein, these amplitudes can now be

computed with levels of precision normally expected in

engineering computations at the expenditure of a relatively

modest computational effort.

Our ability to compute the amplitude of all terms of

the asympotic expansion in the neighborhood of a reentrant

corner of any size offers new possibilities in the area of

failure initiation. When sufficient number of terms are

used in the expansion and the amplitudes are accurately

computed, then all stress field parameters are known in

the neighborhood of corner points, therefore various

hypotheses concerning relationships between elastic stress

field parameters and failure initiation can be tested. In-

the absence of proper extracton methods, uncertainties in

numerically computed stress field parameters render the

formulation, testing and applications of such hypotheses

very tenuous.

A possible hypothesis for example is that the

generalized stress intensity factors are responsible for

crack initiation in reentrant corners in the same way that



Let us consider the case of mode I and rewrite

equations (2.16) and (2.17) in the following form:

U= K1 r 1/2 GM8 (2.20)

v=.K r 1/2 H(e) (2.21)

Their derivatives can be expressed in the form:

a = r- 1/2 G e u- = , r- 1 /2 G'8e (2.22)

av K -1/2 H a;2v = -1/2H(8.223
H1(81)1 ay 1 r 2()

We choose the auxiliary functions to be of the following

form:

r r 1 /2 ~()(2.25)

r-1/2T~e).(2.26)

Their derivatives can be expressed as:

- r-3 /2 (D (8) 2A = r3/ P()(2.27)

ax I 'ay2

-3 /2 ~Y( aw -3/2

rx r- 8) (e.(.8

. . . . . . . . . . . .
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the displacements u and v is known C13, 14] and is given

in the case of plane strain by:

Gu = K (27) - 1 / 2 r 1 / 2 cos 6 (2-2v-cos 2 ) (2.16)

Gv = K (270 - 1/ 2 rI/ 2 sin 2 (2-2v-cos 6 ) (2.17)

for mode I (opening mode), and by:

Gu = K (27) - 1/ 2 r1/ 2 sin 6 (2-2v+cos2 e
s~n (22v~os ) (2.18)

Gv = K (2f)- 1/ 2 r1/ 2 cos (2v-cos2  ) (2.19)

for mode II (sliding mode).

These are only the first terms in the asymptotic

expansions. The second terms are of the order r. The

third terms are of the order r 3 / 2 and so on. The

asymptotic expansions also contain the corresponding

negative powers of r (-1/2, -1, -3/2 etc.), but these

terms make no sense physically since they would imply

infinite displacements at the crack tip, so they are

not considered. Nevertheless, these eigenfunctions

corresponding to the negative eigenvalues will be very

useful for our formulation: the auxiliary functions

0 and ji are chosen to be precisely these eigenfunctions.
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in view of (2.3) and (2.4) we can write (2.12) and

(2.13) as:

1 5 = O(2.14)

1 6 (2.15)

on that part of the boundary where surface tractions are

specified, the quantities 15 and 16 are known and their

integrals are computed numerically. on that part of

the boundary where displacements are specified, the

and p functions vanish. The reason that the functions

0and k are chosen to vanish there is that we do not

wish the extraction expression to contain a contour

integral of the derivatives of displacement components.

The extraction method has a rate of convergence equal

to the rate of convergence in energy if the integrals

used in the extraction represent only energy expressions.

This means that area integrals may contain up to first

order derivatives of the displacements, whereas contour

integrals may contain only the displacements themselves.

It is observed that expressions 1 3 and 1 4 fall into this

category and so they do not reduce the rate of convergence.

In order to evaluate the contour integrals on the

circular arc rCwe proceed as follows: in the neighborhood

of the crack where the circular arc is located, the form of

.....................................
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n + G( n + ny +14 x ax 5 + y ax- an +

+ G( 2 nx + ?- ny)IV (2.11)

ay x ay y

15 u av )nu iu
152[I - + 2- )n x + G( 2-2 nx + iR ny) +

+ G( lu n + n (2.12)ax x x ny

au av av av

16 2 x( + 2  ) + G( -Y, nx + L- n ) +ax ayax x ay y

+G(. n + 'v ny)I. (2.13)

In (2.8) we recognize the expression in the bracket

as the force in the x direction in terms of displace-

ments (0, ). Similarly in (2.9) the bracket represents

the force in the y direction corresponding to those

displacements (0, ). If the auxiliary functions 0 and

* are chosen to satisfy the equations of equilibrium,

then 11 and 12 vanish.

..... ..- ......
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£(X+G) v +n X un + G nfv +
ay y ay x-ax x

r+r

+ G By n v + G x un y]ds
ay y ax y

4

ay ax +

r+r (G) ny -n-nx+

ay y ay u n ds 0

(2.6)

Adding (2.5) and (2.6) we obtain:

A 5(2 + 2 )dA. - S (1 3 +1 4 )ds + (

r+r r+r (2.7)

where:

I I (X+G) 7x + )- + G( L + L4 )]u (2.8)
ax ay

S[(X+G )  ( + ) + G(a + i-)Iv (2.9)

12 5 (+G y ax My axay ax2

Sn x + G( i n + i n)
13 -( + y x ax X ay y

aG(x nx n + x u (2.10)
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and, finally:

2~ 2
U(X+G) ' 4u+ (X+G) a v +

Aax

+ G( a + y20 )u]dA

ax ay2

- [(X+G) 2- un + Xi vny + G 3- nx u +Jax x ax 7x
r+r

+ G fy u + G a vnIds

au av au

+ [ (X+G) o nx + X Onx + G - nxo +

r+r

+ G au n + G Lv on )ds 0

(2.5)

Similarly, multiplying (2.2) by and integrating, after

identical operations, we obtain:

2 2

SAS(X+G) -~ (X+G). u +

A2 a 2

+ G( _2+ 2.4 )v~dA
ax2  y

•"" ". .. '.. ". .' . p ', ' -U' " ". ',w ._. • " "a" " "' -' -". - .. ." . K. j
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lu u iv o au o 2- L
ax ay r ax ax a a y= - [iA 3 + a- )a-x+G ax - G

r+r

+ G §-+ G x l]ds

a+ x 22 a2 0y

-+ v +)n + G u + G y+

JAJ ay ay

2L uG -a~ vJdA
ax2  xy

axj ax ~E ~ n + 4 fy aUx +

r+r

+ u n avt aun + G

+ y ax x- anx  + -

+ x-u n + X vY + G 2-u n

Jx x x ax +

r+r
au au 0 n d

+ G n + ny - 0 nx + G - 0 ds
aG y y ax +G ax S

h

:.
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(X+G)a v + (a2 v+a2

ay-.G (R Wy 2 -_-I-+ ) 0. (2.2)

The stress boundary conditions are:

D u av au a
X 4. - )nx +G(T - n +Lun +

u a%

+ G( L- + .Xn )(2.3)ax x ax y

au av av )n + G( vn + 2 n +

au av+G( y n + ) (2.4)

. x a- ny

where X, G are Lame's constants and R - (nx, n y

is the outward normal to the surface. X and Y are

the vector components of specified tractions in the x and

y directions. Let us now choose two functions 0 and ',

the properties of which will be discussed later and let

us multiply equation (2.1) by 0 and integrate over the

domain. Applying the Gauss theorem twice we obtain:

2u

+ G a u + G a v 2 dA
axy

. -°°o-°" ," ~~~~. ... . % o, °". °. o°. ".". . . . . . . ." o . ° . . . . - - ° . - • - . . .- . . .- - . ., . . .
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2. THE GENERALIZED INFLUENCE FUNCTION METHOD

IN LINEAR ELASTIC FRACTURE MECHANICS

We consider a two dimensional body containing a crack

-as shown in figure (2.1). The boundary consists of piece-

wise smooth curves and there is no re-entrant corner other

than the one at the crack tip. Extension to cases where

the domain contains more than one geometric singularity

will not introduce any additional difficulties. This will

be shown later.

We now remove from the domain a small disk of radius

r-c centered on the crack tip as shown in figure (2.2).

The boundary now consists of two parts: the circular arc

r e and the rest of the original boundary r. The removal

of the singularity enables us to perform integration by

parts. The limit is then taken as r tends to zero.

Let us choose a Cartesian coordinate system (x,y)

centered on the crack tip with the x-axis in the direction

of the crack, and the corresponding polar system (r,e) as

shown in figure (2.3), and write the equations of equili-

brium in terms of displacements (u,v) in the Cartesian

system:

a a2 2
(X G) ( + - + + G( + - ) = 0 (2.1)

ay ay
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In chapter 7 it is concluded that the method is

feasible and reliable, its potential value in engineering

design is discussed and suggestions are made for further

research.

71
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separate the stress intensity factors for modes I and II

is demonstrated.

In chapter 3 explicit expressions are derived for

the asymptotic expansions of the displacements in the

neighborhood of reentrant corners of any size. The real

eigenvalues corresponding to modes I and II for various

angles are tabulated. The displacement eigenfunctions

are also derived for the case of complex eigenvalues.

In chapter 4 the generalized influence function

1 method is implemented for the case of a reentrant corner

of arbitrary size. The method for obtaining the amplitude

of any term in the expansion is demonstrated. Special

consideration is given to the case of complex eigenvalues.-

In chapter 5 the implementation is tested against a

model problem for which the exact solution is known. This

allows rigorous convergence study to be performed. The

theoretically predicted rates of convergence for various

*- reentrant corners are verified numerically.

In chapter 6 tests performed on double edge notched

epoxy specimens are discussed. This test data shows that

a monotonic relationship exists between the stress intensity

factor and failure initiation for a wide range of solid

angles.

". - .r

9. a-..-.*. *..*'- . ..;..; -' , .'....,'*i*.,- ...,-,-.%- . - .,., .-.. ,. . ,. -. ,..
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function method for the extraction of stress intensity

factors in plane elasticity-

In the case of linear elastic fracture mechanics the

generalized influence function method yields separately

the stress intensity factors corresponding to the symmetric

mode of deformation (mode 1) and to the antisymmetric mode

(mode II). Our ability to separate of the two modes may

prove to be important in linear elastic fracture mechanics,

where only the combination of the two modes could be comn-

puted previously with reasonable accuracy and the contribu-

tion of mode II has not been well understood.

The method has a rate of convergence equal to the

rate of convergence in energy, which is twice the rate of

convergence in energy norm [4]. Our ability to achieve con-

vergence in practical computations can be used as a tool

for error estimation. Knowing the theoretical rate of

convergence, we can obtain an estimate of the exact value

of the stress intensity factor (also strain energy, root-

mean square stress measure and other functionals) accurate

to within one percent relative error.

In chapter 2 the method is implemented for crack

problems. The rationale of the method is explained and

the extraction functions are derived. The ability to
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the stress intensity factor in linear elastic fracture

mechanics is responsible for crack propagation. Again,

some small scale yielding criterion must be satisfied.

If experiments verify this hypothesis and establish its

limits of applicability, then we have at our disposal a

very simple and powerful method for the design of structures

with geometric singularities. The methodology of linear

* elastic fracture mechanics can be generalized in a

straightforward manner. For a given angle and mode of

loading the singular elastic field in the neighborhood of

a reentrant corner is of the same form regardless of the

overall configuration and load distribution. Any change in

V the loading or the boundary conditions affects material

behavior at the t~ip of the notch only through the

generalized stress intensity factors which are the ampli-

tudes of the terms in the asymptotic expansion of the

linear elastic solution in the neighborhood of reentrant

corners of arbitrary size. For large notch angles the

higher order terms may also be important as crack

initiation parameters. We can then argue that under

conditions of small scale yielding the generalized stress

intensity factors can be used for predicting failure

* initiation events.

The scope of this report is the implementation,

application and evaluation of the generalized influence
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The integrals of 13, 14, 15 and 16 along the circular

arc can now be computed. A typical term for the

_ -. integral of 13 will be:

- - n u ds
ax x

r

substituting

". r- 3 / 2 01 (e), n = -cos@, u = r r1 2 G(e),

" -" ds - rd8

a .we obtain" IT
S . nn u ds = - Kr S 1(0) G(M) cos 8 de (2.29)

, 1 rE

This last integral is independent of the radius r, it

' * contains only known functions of 8 and can be easily

- computed either analytically or numerically. It also

contains as a multiplicative constant the stress

intensity factor KI . This is fundamental to the

extraction technique. By choosing the auxiliary functions

and p to be of the proper asymptotic behavior in the

" -neighborhood of the crack tip, expressions containing

the radius r disappear. By using the known asymptotic
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expansions of the displacements in the neighborhood of

the crack tip, the stress intensity factor KI appears

as a multiplicative constant. All the terms in the

integrals of 13 and 14 behave exactly in the same way.

Each one will give an integral of a function of e

only, containing K as a multiplicative constant.

Let us now examine the integrals of 15 and 16 on

the arc r . A typical term will be:

1S u n ds.

£

Substituting:

u K i 2  (), n -cose, = r 2 (e),

ax 1 1 x

ds = rde

we obtain:

nx 0 ds - -KI S GI(e) O(e) cos e d6. (2.30)

r"£

This is again independent of the radius r and the same

arguments apply. It is then seen that contour integration

around the circular arc r will yield the stress intensity

factor K multiplied by a constant.

':Il :':: '- ; '' """ """" "" "" ""
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In view of the singularity of the auxiliary functions

" and and their derivatives at the crack tip, the exis-

tence of the area integral over the domain and the contour

integrals over r in (2.7) must now be examined. Since the

integrands I1 and 12 are highly singular (they are of

order r-5/2 in the neighborhood of the crack tip), the

auxiliary functions 0 and p are chosen to satisfy the

equations of equilibrium in that region, so that I and

12 vanish there. As far as the contour integration is

concerned, only the upper and lower faces of the crack

are of interest. We normally assume no tractions there

and it can be seen from (2.14) and (2.15) that 15 and 16

I vanish there. In the case where the crack faces have

applied tractions on them, these integrands are of order

-1/2
r . The integrals of 15 and 16 exist, but care must

* be exercised in their numerical evaluation.

The integral of 13 and 14 on the crack faces requires

further consideration. By comparing with (2.3) and (2.4)

it can be seen that (2.10) and (2.11) can be rewritten as

13 = X( ,P)u (2.31)

14 - o(,A)v (2.32)

where (nd) and ,) are the tractions corresponding to

displacements * and W. We have already seen that the

-. . . ...
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auxiliary functions 0 and P satisfy the equilibrium

equations in the neighborhood of the crack tip. By

considering their form in (2.25) and (2.26) and

recalling that the displacement expansions in the

neighborhood the crack tip contain terms of the order

r 1/2 we conclude that the auxiliary functions $ and ,

can be chosen to be the eigenfunctions corresponding

to the eigenvalue -1/2, therefore they satisfy the

traction free boundary conditions on the crack surfaces.

In other words X(,, ') and Y(,, ,) and consequently

13 and I4 vanish there.

Let us now summarize the conditions that the

auxiliary functions 4 and ' must fulfill and then

proceed to construct them:

i) 4 and ' must satisfy the equations of equili-

brium in the neighborhood of the crack tip;

ii) they must satisfy the traction free boundary

conditions on the faces of the crack near the crack tip;

iii) they must have a singularity of the order

r- 1/ 2 in the neighborhood of the crack tip;

iv) they must vanish on the part of the boundary

where displacements are prescribed.

Conditions i), ii) and iii) together mean that

* and , are eigenfunctions for the problem of an

*
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infinite body containing a crack, and correspond to

the eigenvalue equal to -1/2.

We now observe that in the absence of surface

tractions both the equilibrium equations (2.1), (2.2)

and the stress boundary conditions (2.3) and (2.4) are

homogeneous and contains only material constants and

the derivatives of the displacement vector components.

*By differentiating them with respect to x it is seen

that and I- also satisfy the same equations. There-

C* fore they are possible candidates for 0 and W satisfying

requirements i) and ii) above. By comparison of (2.20),

auv(2.21) with (2.25), (2.26) it is seen that n- and W-

a also satisfy requirement iii) above. If we ncw consider

* the case of a body where only tractions are specified

on the contour, then requirement iv) does not have to

U be satisfied and we have arrived at an explicit form

for 0 and satisfying all the requirements. By

differentiating (2.16) and (2.17) with respect to x

-- and setting the constant multipliers equal to one, we

obtain for mode I:

- - r 1 2 Cos (2-2v-Scos2  +4 cos
4 e) (2.33)

. r-I 2 sin (-2+2v-3cos2  + ) (2.34)

"*'**""* ':'*'S'?" *"*-..,. .- *,".'"*'..-:" .."":" ..'. o , , ,:"-2. -2.-. ,"'" . '.. . . . .... . . ..""'-'." -'':-'-1'",'-:--,".':.:.:.. ".-. -''-
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and for mode II:

Zr-i/2 sin (-2+2v+3cos2 8 4cos 4  ) (2.35)

-1/2 e 28 4 8
-r -  cost (2v-5cos +4cos ). (2.36)

The contour integrals on the circular arc that appear

in (2.7) can now be computed explicitly. Omitting inter-

mediate results, we obtain:

- I(I+ ds + (I (1+I 6 ds 4 4(1-v) r (2Tr) 'K34 -

r r (2.37)

Taking into account (2.14) and (2.15) we obtain from

(2.7) the extraction formula:

4(1-v)t(27) 1/2 K - A (II+1 2)dA + (13+14 )ds -
A

r

S Ods - Yipds. (2.38)

r r

In the case where only tractions are specified on the

boundary of the body this simplifies to:

S.-
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-S

E 4(i-)r(2) 1/2 K1 = (13+14)ds - ds - YWds

r r r (2.39)

* In the case of mode II, the integrals on the circular arc

r yield the same constant and we obtain:

4(i-v))(2r) KII - A (Ii+ 2 )dA + (,3 +14 )ds -

r

Xods - Ytpds (2.40)

r r

and in the case of only applied tractions specified:U
4 (1-v) it(2r)" 2 K (I (1+I )ds - Zods - Tpds.

r r r (2.41)

In the case where the domain contains more than one

geometric singularity, we simply remove a small disk of

- radius r - e from every singular point. This is done

in order to be able to perform integration by parts.

The asymptotic expansions (2.16) and (2.17) or (2.18)

and (2.19) are considered only in the neighborhood of

the point where extration of the stress intensity factor

is desired. The auxiliary functions 0 and q are also

referenced to that point. The other singular points

I.

~~~~~.. .- .......- . .... .. '......... ...-.-..-.... , . ., , .. ..... .-.-...... -- *S.*, . * . .. .' .,
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are thus treated as the rest of the boundary and expres-

sions (2.38), (2.39), (2.40) and (2.41) are still valid.

In the formulation described above only one mode

was considered, that is, the vicinity of the crack tip

was assumed to experience either mode I or mode II

deformation, and the corresponding stress intensity

factor was extracted. Of course, in practical situations

both modes will be present and the two intensity factors

must be computed separately. One of the major advantages

of the generalized influence function method is the

ability to obtain the intensity factors for the two modes

separately. It will now be shown that the extraction

formulae (2.38), (2.39), (2.40) and (2.41) are still

valid when both modes are present simultaneously. Let us

first formally introduce the following operators that give

the tractions in the x and y directions corresponding to

displacements u and v through the strain-displacement,

stress-strain and Cauchy boundary relations:

(u,v) ( + + G( a n+ +
ax T l + axx ay

au av+ G( - nx + 2- n ) (2.42)

.......................... '-?:i:;-:i: i ................................-...--,---.-,:-- :-:;-:?::- :.:-.:.--
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Bu Bv + v + v

!(u,v)= (LU + - )ny +G - n+ l- ny +

Sv n (2.43)a+ G nx a y)

Equation (2.7) can now be written as:

A S (1+12 dA -S E7(0, p)u + 7'(0,i)v~ds +.
r+r

+ 5 [x(u,v)O + Y(u,v),]ds- 0. (2.44)

r+r1
The only difference now is the asymptotic expansion for

the displacements which is valid along the circular arc

r'. Let us use the notation

u - uI + u1 1  (2.45)

v - v I + v1 1  (2.46)

where subscripts I and II refer to the corresponding

modes and uI, vI, uiI and v11 are given by (2.16),

(2.17), (2.18) and (2.19) respectively. They are listed

below together with their derivatives as well as the

auxiliary functions and their derivatives.
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1 2e

1/2 2 e 2
v a1 r sin I(2-2v-cos )(2.48)

au 1a r-1/2Cos 6. (2- 2v-5cos 2 6+4cos 4 ) (2.49)

1 1/2 cs 2e co4e
a - sin (2-2v-3co 24(.0

Coa r /2 s n2 (-2+ v o 2. e- 4cos 4  6 ) (2.52)
22

1/2( 26e 46

r cos 2- (-v5o4cos )(2.53)

-1/ sin 26 (-2+2v-3cos2 e +4cos4 e- (2.54)
22

11 r-3/2 Cs6 r6-6v+(43+8v)cos 2 e +

+ 8co 4 6.-4 6 6
2 24o -4co (2.55)
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-3/2 e 2e+

I= r -  sin 2. [2-2v+(-23+8v)cos 2
22

+ 60cos4  -48cos6 (2.56)

-/ 2 Os6)(.6

I 1 sin [-2+2v-(7+8v)cos2

60cos 4  -48cos 6 e (2.57)
2 I

r 3 2 Cos e [-6v+(35+8v)cos 
2  -

4e 6e%

- 84cos 4 + 48cos 6] (2.58)

u -a r 1/2 s 2 (2.59)
II rl/ 2"

vi ai 1  cos 6 (2vcos2 8 ) (2.60)

au-l 1 a r-1/2 sin 8 [-2+2v+3cos2  -4cos 4 6

(2.61)

au - a r 1 /2 os [4-2v-5cos 2 e +4cos 4 e ]

(2.62)



-35-

V a1  r 1 /2 cos 12v-5cos2 6 +4cos 4 2 j (2.63) -.

22

-2 aI r1 sin 2- [2v-3cos2 6 +4cos 4 2] (2.64)

r -2 sin 2 [-2+2v+3cos2 6 _4COS 4 6 (2.65)II 2 -/ i 2 2i.

-1/2 2 e 4 6
Sr Cos [2-5cos +4cos (2.66)

1 -3/2 2 2e-

x 2 r- sin 2 [-2+2v+(2 3-8v)cos2

60cos4 e +48C0S 6 6 (2.67)

? I3/2 8 2 6 "
-- - ir- Cos I [12-6v+1-51+8v)cos +""

+ 6Ocos 4 -8cos6e(.8

+ 84cos 4 e -48cos 6  1 ] (2.68)

22

*. -* * * * * * * * ...... +. ..l -+..... . . . . ..,,,.*,.*,...,. ,+.'.i ,. .,. . . . ..,. + .. . . - .+



-36-

= r-3/2 sin . [2v-(15+8v)cos 2 e +

60cos 4 248C0S6 2 (2.70)

K I  K T
a a 11 = -- (2.71)

The contour integral on the circular arc r' in

(2.44) can now be written as:

- NN[(O,')u 1 + Y(O,1)v 1)ds -

r 
£

- SE(.,ou II + Y(O,ip)v 11 ]ds

r

+ [X(uIv 1 )o + Y(uIvI)W]ds +

+ [Y(uIII vii)o + Y(uII'vII )]ds. (2.72)

r

In order to extract the mode I stress intensity factor we

substitute * 1 and * - 4) V It can now be seen that 0,

Sau VI I - vi- and nx  -cose are symmetric
ax ' III vi 5 - 'ax
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with respect to the x axis whereas , - , Uii,

, - and n -sine are antisymmetric with

respect to the x axis. By virtue of (3.42) and (3.43)

we conclude that X($, 4), X(uI, vI ) and Y(uII, vi ) are

symmetric whereas Y(), Y(uI , vI ) and X(uII, vi)

are antisymmetric with respect to the x axis. Since the

expressions in the radius r disappear when integrating on

the circular arc r and the domain of integration (-7, 7)

is symmetric with respect to the x axis it follows that

the integrals of X(O, ,)uii, Y(O, O)vIi, X(uIi, v11 )0,

Y(uiI, v11 )ip vanish, these products being antisymmetric

with respect to the x axis.

The remaining integrals are:

- X(,(, 4)uI + Y(O, )vi]ds +

r

+ [Xlu I, vi)o + Y(ui, vi)4lds (2.73)

r E

and these are the same as those considered in the deriva-

tion of the extraction formula for KI -

In order to extract K we substitute ¢ =" II I thi cas , y ,

•In this case a- are the symmetric termsay ax
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3. EIGENVALUES AND EIGENFUNCTIONS FOR AN INFINITE NOTCH

OF ARBITRARY SOLID ANGLE

Let us consider a two dimensional elastic body of

infinite dimensions with a notch, the solid angle of

which is equal to 2a as shown in figure (3.1). we choose

the vertex of the angle to be the center of the coordinate

system. The bisector line of the solid angle is selected

as the x axis of a Cartesian system (x, y) and the

reference (0 = 0) axis of the corresponding polar system

(r, 6) as shown in the figure. The faces of the angle

are assumed to be free of tractions. We shall investigate

the state of stress and deformation in the neighborhood of

the apex. In the interest of completeness, all required

equations are derived from first principles [15, 16].

Let us write the equations of equilibrium in the case

where body forces are absent in the form: -

3 C7 aT+ = 0 (3.1)

ax0. (3.2)

In the usual way, let the stresses be defined in terms of

the Airy stress function X as:

:...._ ... -. ..-,... .- ... -....... -..-......-........... -..... -...... -........-........ ............ .......
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X( Iv1)= r-1 /2 x 1 (e) (2.127)

Y~lv1)mr-1 / 2 Y1()(2.128)

this integral is equal to:

I r
+ [X1/ (rE)G1 (6) D) + Yl (O)1 (e)]d

-r1 /2 C 5 + r-1 /2 C 6  -1/ 2 C7  (2.129)

The necessary and sufficient condition for this to have

the same value for all values of r is that C 7 0, that

is L 1-0.
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(0 ((,Pul + Y(O,'P)v 1 ]Ids +

r +r

+ ((u 1 v 1 )o + Y(u11 v 1 ) Pds =0 (2.125)

r 1+r 3*

therefore:

- [O$,Wui + Y(O, p)vl]ds +r 1

+ [(u Pv 1 )0 + (l 1)ld

r 3

- 3 (~(,tpu 1 + Y(Olp)v1]Ids +

r3

+ [O(u 11v1  + Y(u11 v ) Ipds (2.126)

r3

which means that the contour integral L 1 has the same

value on all circular arcs r. (In fact Lis path

independent but it is convenient to consider only

circular arcs here). By using (2.112), (2.113), (2.77),

(2.80), (2.99), (2.100) and noting that

-.- 7 7-. *~ **** * * ** - .



-48-

A 1 d

A LIL X('u + L y(4',fl )d

[X'l')ul + Y(OW)vl]ds

r

+ S [X(ulvl)O + Y(ulvl)*]ds - 0. (2.123)

The auxiliary functions 0 and P satisfy the equilibrium

equations in the locality of the crack tip, therefore

the area integral vanishes. Both the auxiliary functions

and the eigenfunctions satisfy the traction free conditions

on the crack surfaces, therefore the contour integrals

vanish on the segments r 2 and r4 of the boundary. Equation

(2.123) then reduces to:

- [X(3,i)u I + Y(O,,)vlIds +

+ S [X(ulv1 )o + 7(ultvl) 1 ds - 0. (2.124)

r 1 +r 3

We now choose a larger annulus bounded by the circular

arcs r1 and r3 and apply the same arguments. Then:

'.:'- '. '-.. ' '': .. . '. . , % '' - . - .-. . '-. . .' ' ,."- , "- -1". -.

• •.o . °. ° % °.-. ... •. .. . ° ... %, . .-. •.' . . -'% 
.. o "° . .
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Figure 2.4

Annular ring with a slit
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[(U 3 ,v 3 )o + Y(u 3 ,v 3) T]ds

r E

r1/ 2  [X3 (8)'(e) + Y3 (e)'T3 (e)]de -r 1/ 2 C4.

(2.121)

It can be easily seen that in the limit as r -1 0 both

expressions vanish.

The integral L1 appears to be more troublesome as

it will be of the form r "1/ 2 C and this is unbounded as

r - 0. We shall now prove that this integral is zero.

Let us consider a two dimensional body in the form

of an annulus with a slit, centered at the crack tip as

shown in figure (2.4). The boundary of this body consists

of the two circular arcs r1 and r3 and the straight

segments, r2 and r4 on the crack surfaces. Since the

eigenfunctions satisfy the equilibrium equations we can

write

Lx (U,V 1 )o + Ly(ulV 1 )W - 0 (2.122)

integrating over the domain and applying the Gauss

theorem twice we obtain:
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L1U 2 ,v 2 )~ + Y (u2 1 v2 .nP~dS

r C

liT
Ex x2 (e) (e) + Y 2(9) 'i(6)]dO C C2  (2.117)

which is again independent of r and can be readily

computed.

In order to evaluate the integral L3 on rwe use

(2.79), (2.82) and observe that:

R(u, v) r r1/2 x (e) (2.118)

Y(u3  v) r r1/2 Y (6) (2 .119)

therefore:

u+ YOpoV3 Ids

r

-rl/2  7rI MeG (e) + Y (eH (e)Jde r= / !

(2.120)

and:

7-
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Let us now examine each of these expressions separately.

The integral L2 will provide the required K2 . In view

of (2.42), (2.43), (2.78), (2.81), (2.99), (2.100) we

can write

XrOW) X r 2  (2.112)

-2"2

) r - 2 Y () (2.113)

X(u 2 ,v 2 ) -r x 2 (e) (2.114)

S- - 1
Y(u 2 ,v 2) - r Y2 (e) (2.115)

therefore, since ds - r de:

I. I[Xl3(O)u 2 + Y(O'P)v 2 Ids "

r

- [xE(e) G2 (e) + Y .(e) H2 (e)]de c.

(2.116)

Thif last integral is independent of r and can be

computed either analytically or numerically. Similarly:

i L
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.5 (O,'Pu + Y(OWv~ds +

r E

+ (XE(u,v)O + Y(u,v)~Pds L, + + L 3  (2.108)

where:

L, -K,,RiO)u 1 + Y(O,'Ov 1 ]Ids +.

r c

+ Ki [3(ui 1vQ)o + 7(ui1 vip~ds (2.109) I

L 2 -K 2  5[R(",~)u2 + Y(0,iV 2 Ids +

r

+2  5[3E(u2 1 v 2 )0 +1 Y(u 2,v 2)ipd 210

r E

L3 -- K3  5 (O(,*)u 3 + (01S)v Ids +

r

+ 3  [XE(u 3 1v3)0 + Y(u31 v3 )Wd(21)

rI
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Let us further introduce the notation Lx (u, v) and

L y(u, v) for the differential operators of equilibrium

in the x and y directions:

-2 2
L a au av au + a2u (2.105)
• (uV) (X +G) ( 7 + - G( - 2

)a au v a2 v a v

L y.u, v) .(+G) (x +  ) + G( 1 + - ).(2.106)
ax a

Equation (2.44) can now be written:

IL ([,)u + Ly (,v)v]dA -

i - 1 [(,,)u + Y(0,)vlds (2.107)

r+r

mm + S [Y(u,v)O + Y(u,v)Vlds - 0.

r+r

At this point we are interested only in the contour

integrals around the circular arc r . The other integrals

will not be affected as the asymptotic expansions are not

valid there. The integrals on r can be written as:

r

• "~~~~~............... ..... .. ..-. .... .... ... .. ..... ,. ,..- . , _, '.,' . ....
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v31 (r,8) - 1/2 H3 1 (e) (2.97)

v32(,@)= r/2 '
v(r,6) - r H3 2 (8) . (2.98)

The intensity factors Ki and the eigenfunctions ui, vi

may correspond to either mode I or mode II. The intensity

factor K2 corresponding to the second term in the expansion

will now be extracted. To this end the auxiliary functions

are chosen to be of the form:

*-r $(8) (2.99)

-i

-r - (9). (2.100)

Their derivatives can be written in the form:

ao -2-7- r -  1(9) (2.101)ax1

ao r-2 *2 (8) (2.102)

; a r-2 1() (2.103)

--P a r- 2  2(e) ,(2.104) ..

y• 2

7-
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1-v Kv 1 (r, e) + K2 v(r,e) + K3 v(re) +a, y 1v21 2 v22 332, •.•

(2.86)

where:

Sr" G1/(2 ) (2.87)
!:i:Ull(r, ) - 1/ 2

Sr -I/2 G12 (8 ) (2.88)

C u21 (r,8) - u21 (e) - G21 (e) (2.89)

u2 2(r,8) - u22 8) = G22 (e) (2.90)

m u31 r~e )  r / 2

u(r,e) = z G31 (8) (2.91)

U32(r, 6) r 1/2 G32 (e) (2.92)

• 11 rI 1 12 (e) (2.93)

V1 2 (r,8) r'/ 2 H12(8) (2.94)

v21(r,e) . v21(e) H 121(e) (2.95)

v22 (r,6) - v22 (e) H 122(e) (2.96)
22

• °
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ul(r,e) r1 / 2  G (6) (2.77) -

u 2 (r,8) - r G2 (e) (2.78)

u 3 (r, e ) = r3 / 2 G3 (8) (2.79)

v1 (r,6) r 1/2 H 1 (9) (2.80)

v2(re) = r H2(e) (2.81)
2' 2

v3 (r,e) = r3 2 H3 (8). (2.82)

Their derivatives can be written in the form:

au K1  (r,e) + K2 u2 1 (.r,e) + K3 u31 (r,e) +

(2.83)

- K1 ul 2 (r,e) + K2 u22 (r,6) + K3 u32 (r,O) +

(2.84)

Xv (r,e) + K2 v (.r,) + K3 v(r,O) +-X 1 Vl1 221 3 v31 .,

(2.85)

....... • €* ... . . . ... - .- . .*. *. . . . .. * ..*.S
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and *, , are the antisymmetric terms. It follows

that X(O, f) is now antisymmetric and Y(O, W) is symme-

tric. The integrands that now cancel are: Xu(, .)u1 ,

S, W)vI , X(uI , vi)t and Y(uI , vi)W. The remaining

integrals are:

- I * O)ull + 7(0, )vI 1]ds +

r

+ Y g(uIII, vii) + Y(uii, vii)l]ds (2.74)

r

which are precisely those considered in deriving the

formula for KI.

* . Another advantage of the extraction technique is

the ability to extract the intensity factors corresponding

to higher order terms in the asymptotic expansions. Let

us write the asymptotic expansions for the displacements

in the form:

u = K1 u1 (r, 8) + K2 u2 (r, 6) + K3 u3 (r, 6) + ...(2.75)

V K1 vl(r, e) + K2 v2 (r, 8) + K3 v3 (r, e) + ... (2.76)

-- where:



rr~VC Wrr- 7:w r:V F.~-.-
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= (3.3)

-- ay 2
a y a 2X (3.4)

xyx

It can be easily verified that the equilibrium equations

are identically satisfied. The stress-strain relations

in the case of plane strain can be written in terms ofI"

the displacements as:

- X +  + 2G au (3.6)x ax ay7 ax

.X Lu av + 2G av (3.7)

y ax _y W)

T" G( a; + (3.8)

Adding (3.6) and (3.7) yields:

au av'" X +  CTy -X 2( + ) "(7x + - (3.9)

Combining (3.6) and (3.9) and putting 2(X+G) = v we

obtain:

2G Lul = - v(ax + ay) (3.10)

. ........... .................
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Analogously:

2G = - v(n + cr) (3.1)
ay y x y

In the case of plane stress we can write:

2u + av +w au

(  + x+ ax ) + 2G a (3.12)

u 3v 3w _v

S- ( - + - + L) + 2G av (3.13)
y ax ay az a

u v 3w 3w ( 4
-) X + L + z + 2G (3.14)

ax y 3z a

from which by summation:

T3 + 2 ( U- + iv- + L) (3.15)
x y T+ ay az

and by substituting back for 2- + + 2- and putting

.'.2G = - we obtain:,,,3-X+2G =l+v

Gu - (cX + rr ) (3.16)D; 2G . -nx i+
1+v x y

2GV (3.17)
G x +-v x y

We define a as:

',2- -
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v for plane strain

= (3.18)

+- for plane stress

and combine (3.10), (3.11), (3.16) and (3.17) to obtain:

2G u a a " (a + ay) (3.19)ax xx y

2G = y (ox + ay). (3.20)

We now differentiate (3.19) twice with respect to y,

differentiate (3.20) twice with respect to x, add them and

use (3.8) to obtain:

a 2T 2 22
r2 + ax V (a + ) (3.21)

axay D- ax 2  (3.21

" Finally, substituting (3.3), (3.4), (3.5) into (3.21) and

dividing by (1 - a) we obtain:

SV4X = 0. (3.22)

We now write:

Tx +C~y 2 xa2y (3.23)

.. . . ........ .... .

. . . . . ...°. * *~. . . . .
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This equation defines the function 1 in terms of the -

stress function X up to the functions of integration.

Equations (3.19) and (3.20) can be written in the form:

au=Y + (1-cI (a + C) (3.24)
2G x  y

2G 2= -x + ( - a)(x + CT) (3.25)

ay x x

and by use of (3.23) they become:

au a a-
2G 1u - - + (1 - a) (3.26)

ax aa
.. .

a v a 2a 2q")
2G -- + (i - a) .(3.27)

Ty- ay

These can now be integrated to give:

2G u - - + (1 - C) l-  (3.28)ax ay

2G v = - + (1 -O (3.29)ay

where u and v are known up to possible rigid body motion.

These displacements u and v were derived on the

basis of equations (3.6) and (3.7). The third equation

of equilibrium (3.8) also has to be satisfied which

imposes an one more condition that the function ' has to

satisfy. From (3.8) and (3.5):

. . °-*

-%, . '., .... ,,.. '' •* '' '.* -' " ,', ', . . ,... ., .,. .. .-, - *. . ,- -. ... . .. . . . . . . . .. .-,. ." •- .-
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Differentiating (3.28) and (3.29) and adding:

a2
2 r 2 ........ L +(1- 7 2 (3.31)

and in view of (3.30):

7 2'= 0. (3.32)

r The question now arises whether it is always possible to

- find a function 'P which is harmonic and related to the

stress function by (3.23). By taking Laplacians of both

sides of (3.23) we obtain:

- 4 2 2 2 ( 2X _L2 (V )=0. (.37 X 7 V X)- 7 axay axay0. (3)

We now separate the terms that are independent of x and

the terms that are independent of y by writing 'Pas:

* 'P - f1(x) + 2 (y) + w(x, Y) (.4

*from which:

ax ay2
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and by (3.33):

a2  2
2 2

axy (V ) L- (V2w) - 0. (3.36)

From which:

ay a2
[ Ty-72 w(u, y)] 0 (3.37)

consequently, the expression in the bracket is

independent of x:

Therefore, Vw(x, y) is itself independent of x:

2 2
V w(x, y) ' 2 w(y) 9 2 (y). (3.39)

Interpreting now the mixed derivative in the reverse

order:

a a 72 w(x, y) 0 (3.40)

Therefore, the expression in the bracket in independent

of Y:

T- 2 w(x, y) 93 wx) (3.41)

from which 72 w(x, y) is itself independent of y:
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72 w(X, y) 7 2 (x) = g 4 (x) (3.42)

From (3.39), (3.42) and noting that constant terms have

been incorporated in fl(x) and f2 (y) it follows that:

V2 w(x, y) = 0 (3.43)

or

V2 [(x, y) - fl(x) - f2 (y)] = 0 (3.44)

which means that the function W can always be adjusted by

means of functions of x only and functions of y only to

become harmonic. These functions are the integration

functions needed to- obtain qp from X. There are no other

-.' requirements that p has to satisfy, therefore, it is

I ! always possible to find such a function.

Stress functions in polar coordinates

- Expressions for the stress components in polar

coordinates in terms of the stress function X can be

derived as follows:

Noting (3.3) and using the stress transformation law we

obtain:

-.

.. . . .. v -'-; .-"- .. ..'. . .. ... .w4,,. * " .. ,.'*,, ".*..*... .- * . . * S'...-'"- ,'.* .- . '.
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S'r cos 2e -
2Trecosesine + C; sin 2e (3.45

Dy2

transforming 7f into polar coordinates:

ayy

2~ ~ cos _

sin6 r r (346

a2 sin86- ar r)(sinO a ~+2-

22 a
=Cos 6(-17 2a + )+ 2sinecose ( l

r a62  r ar - r

+ sin 2 6 2 (.7

comparing the coefficients of like trigonometric terms

we obtain:

r ~

a a

+ a80 2 (3.51)
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The stress-strain relations of two-dimensional

elasticity in polar coordinates can be written concisely

as:

r 2 - + (i - 0)(Cr + ae)) (3.52)

e = 1 + (1 - T)(r ( + C) (3.53)

e 2G r r

with a given by (3.18).

We now introduce the function I which is defined (up to

the functions of integration) as:

2X M a (r a* ) (3.54)

Taking into account (3.50) and (3.52) the expression for

C can be written as:r

-Tr- IG[ + - (r (3.55)

ar

integrating with respect to r:

Ur 2G if + (1 - a) r (3.56)

where now incorporates the integration function.
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In view of (3.54) and (3.51) we can write:

a* 1a~ aleor+a8 = (r -5 -6OP ( + r !L)

(3.57)

-Ji

and expression (3.53) for ce can be written as:

'r au -'1
Ur 1 ue 1 1 2 .

+ (i a ) (Nl + r - )](3.58)rr aa

Multiplying through by 2Gr and substituting for u r from

(3.56) gives after some cancellation of some terms:

2i-
a8__1 a2  2 a22G r +(l - a) r - (3.59)
ae 6 rae

integrating with respect to e:

u8 - r + (1 co) 2 1- (3.60)

where once again the function of integration has been

incorporated in

So far only the radial and circumferential components

of stress and strain have been considered. The considera-

tion of the stress-strain and strain-displacement relations

for shear stress and strain will lead to an extra condition

that the function 1 must satisfy. From: _j

0*'

.9 . . .* .- .**- .* ' A* A* * . . A-t

* . '..*! ~ ~ Jd ~ 2.~...~~ .
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re GY rO (3.61)

and:

IUr u ue (362)
re r M r r

Substituting for ur and ue from (3.56) and (3.60) after

some manipulation we obtain:

1 -  2X  1 1 r 2 1 a2 1
r i T + r (1 - n) ( __526-)-. +

r rr a r

or

2 2 Gv21 + _L a~x j (3.63)r6 G1 r [ ~ r rr 2 Mrr

Comparing with (3.56) and (3.61) we deduce that:

=2 1 M 0 (3.64)

The solution of the two-dimensional elasticity problem

then reduces to the determination of a biharmonic

function X and a harmonic function i1 related to it

through (3.54) .

*' * .*• " %% , , , ." * .- . " .-V .-.. .. .-.......... . , . - .........-.
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Eigenvalues and eigenfunctions for the notch problem

We now seek the general solution in the neighborhood

of an angular point. We shall investigate solutions of

the form

x K+l F(6) (3.65)

Then since

_2 1 ? 1 2 2 1 ?
4 x - a'+ .. - - - +2  r r2 ? 2  r r r

1 a 2
+ --- )x = 0

we obtain: r

2 212a11 a r<+l+ +F(e)
ar r a6

<-i 2F
= r -[ +1) F(e) + F"(e)] (3.66)

and:

V4 X = rK 3 [Fiv ()+2(K 2 +I)F"(e)+(K-) 2(+) 2 F(6)](3.67)

from which:

- - ~- h.
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F i(9) + 2(K 2+1)F"(e) + (K-1)2 (K+1) 2F(e) -0 (3.68)

Let

m8
F(6) = a e (3.69)

The characteristic equation becomes:

m 4 + 2(K2 +1)m2 + (K-1)2(<+i) 2 = 0 (3.70.)

which has the roots:

M = + (K + 1)i

m = + (K - l)i (3.71)

these roots leading to solutions of the form:

sinCx+l)e, cos(K+l)8, sin(c-1)8, cos(K-l)e

and the general solution can then be written in the

form:

X - r +l[Clsin(K+l) +C2 cos(K+i)6+

+ C3sin(c-l)+C 4 cos(K-1)6] (3.72)
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At this point it should be noted that the above form for

X satisfies the biharmonic equation for any value of K,

real or complex.

In order to determine we investigate solutions

of the form:

= rm G(e) (3.73)

Since i is harmonic, from

L + + 2 0

2 r ar r 2e

we obtain:

G"(e) + m2 Ge) - 0 (3.74)

Let

G bene (3.75)

then:

n 2+ m 0 (3.76)

from which:

n = + mi (3.77)

- - - - -- --



-80-

G2(r, e). Thus a complex root of the eigenequation gives

rise to two distinct eigenfunctions. This can also be

seen if we write the stress intensity factor in complex

form and write the term corresponding to (3.140) as:

u (K+iK2 ) r l[G 1 (r,8)+iG2 (r,e)] (3.141)

separating real and imaginary terms:

u K1  G1 (r,6) - K2 r G2 (r,e) +

+ i rlE 1 G2 (r,e) + K2 Gl(r,e)] (3.142)

Both the real and the imaginary parts of this expression

are acceptable solutions. However, we observe that the

imaginary part contains the same eigenfunctions G1 (r, 6)

G2 (r, ) as the real part. Therefore, to a complex

eigenvalue there correspond two distinct eigenfunctions,

each with its own stress intensity factor. They have a
K1

singularity of the same strength r . If the complex

number in (3.136) is an eigenvalue, its complex conjugate

will also be an eigenvalue. To this eigenvalue there

correspond two distinct eigenfunctions G3 (r, e), G4 (r, e),
K1

both having a singularity of the same strength r . We

then conclude that to a pair of complex conjugate
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It is seen that only the real part of the complex root

determines the strength of the singularity, the imaginary

part being incorporated in the eigenequation. The

expressions in the bracket in the eigenequations (3.130),

(3.121) of mode I and (3.130), (3.131) of mode II will

also be complex. Let us write (3.120) for example in

the form:

u rK[F1 () + i F2(8)] (3.138)

In view of (3.148) this can be written as:

u = r F1 (6)cos( 2 tnr)-F 2 (e)sin(K 2znr)

+ i(F2 (e)cos(K 2 nr)+F 1 ()sin(K 2 nr))] (3.139)

The terms cos(K 2£nr) and sin(K 2 Inr) are highly oscillatory

in the neighborhood of the notch tip, the frequency of

oscillations tending to infinity as the radius r

approaches zero. Let us now write (3.139) in the form:

u - r [G1 (r,e) + i G2 (r,6)J (3.140)

There will be a stress intensity factor corresponding

to the real part Gl(r, 6) of the eigenfunction and a

different one corresponding to the imaginary part

. . . . . ' . . . . . . . ." . . . o . ." . o L o 
-

. . • - .. . . °
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2GC(2T) /2 = K* rK[(CB+K+l)sinKe-2KCsinecos(K-l)e]

(3.133)

and for mode II:

2GC(2r) /2u = K* rKE (CD-<-l)cosKe+2KCsinecos(K-l)eJ

(3.134)

2GC(27r) 1/2v = KF* r K-(CD+K+I)cosKe-2KCcosecos(K-l)e]

(3.135)

It is reminded that the eigenvalue K and the constant C

are different for each mode. "
-4

Behavior of the roots of the eigeneguations. The case

of complex eigenvalues.

The above derivation is valid for complex values of

the eigenvalue K as well. Lit us write the complex roots

in the form:

K = Ki + i K2 (3.136)

With this notation, the singular term can be written as:

K
r r cos(K2Lnr) + i sin(K2 nr) (3.137)

2_1

.; : .... . . .. . . . . . -. . . . . . . . . ... .,. .- .-, ,.. ... -. ... . . . . . .
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These are transformed into Cartesian coordinates and

after trigonometric transformations they are written

in the form:

2Gu = r' [(CD-<-l)sinic+2icCsinecos(K-l)) (3.130)

2Gv - rK [-(CD+c+l)cOsKe-2CcosecOs(K-l)e ]  (3.131)

where D is given by (3.128) and C is the ratio in (3.100).

The eigenfunctions (3.120), (3.121) of mode I and

(3.130), (3.131) of mode II are determined within a

multiplicative constant: any multiple of these eigen-

functions will also be an eigenfunction. This multipli-

cative constant is chosen to agree with the one adopted

in engineering literature on Linear Elastic Fracture

Mechanics. The generalized stress intensity factors,

which are the amplitudes of the singular terms in the

displacement and stress expansions in the neighborhood

of the reentrant corner, are then defined to coincide

with Irwin's definition [13] of K1 and KII by writing

for mode I:

2GC(2) 1/2u - K* rc[(CB-K-l)cosKe-2KCcosecos(K-1)e]

(3.132)
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F(e) =sjn(K+1)e + C sin(K-1)e (3.122)

G(e) = - C COS (K-1)e (3.123)

from which:

F'(6) - (K+1)COS(K+1)e + C(K-1)COS(K-1)e (3.124)

GI(e) = 4C sin(K+1)6 (3.125)

and the displacements for mode II can be written as:

2Gur r rK[_(K+l)sifl(K+l)6+CDsifkl(1 (3.126)

2 Gue = r KE_(K+1)COS(K+1)68CECOS(K1)6) (3.127)

where:

D 4 4(1-M)- - 1 (3.128)

E 4 4(1-ar) + K -1 
(3.129)
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U = cose u - sine Ue (3.116)

v - sine U r + cose Ue (3.117)

to be:

2Gu = r [-(K+l)cosK 8+CAcosec s (K-1 )e

- CBsinesin(K-1)e] (3.118)

2Gv - rIK[ (+l)sine+CAsinecos(-1)e+CBcossin(-1)e]

(3.119)

Through trigonometric transformations these can be

written in the form:

2Gu - rK[ (CB-oc-l)cosK-2KCcosecos(K-l)e] (3.120)

2Gv - r[ (CB+K+l)sine-21cCsinecos(K-l)e] (3.121)

where B is given by (3.115) and C is the ratio in (3.102).

Mode II

In a similar way by taking C1 - 1 and calling the

ratio C3/C1 = C in (3.100) the stress functions can be

written as:

"- " -' .-'-.i."." . : " "- '. . i , . . " ":" - ,. . . .-.13- "-" . . - . . *
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and:

G(e) = C sin(K-l)8 (3.109)

from which:

F'(6) = -(<+l)sin(K+l)e - C(K-l)sin(K-1)e (3.110)

G'(8) - 4C cos(K-1)e (3.111)

using (.3.82) and (3.83) we can write the displacements

for mode I as:

2G ur rK[-(K+1)cos(K+1)8+CAcos (-1)8] (3.112)

2G ue - r [ (K+l)sin(K+1)6+CBsin(K-1)e] (3.113)

where:

A - 4 (1-) - (K+1) (3.114)

B - 4(1-n) + K-1 (3.115)

The displacements u and v in Cartesian coordinates can now

be found through the transformation law:
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In the case of a crack (a = 1800), the first

positive eigenvalue K - 1/2 is of great significance in

linear elastic fracture mechanics, where the symmetric

mode is termed mode I and the antisymmetric mode is

*.. termed mode II. In the sequel this terminology will be

extended to the case of a notch of an arbitrary angle.

In the crack case the two modes have the same eigenvalue

*; but the eigenfunctions corresponding to them are

different. In all other cases (except the half plane

r case as we saw) the two modes have different eigenvalues.
I

.. -This means that whenever C1 and C3 are nonzero then C2

and C4 must be zero and vice-versa.

It is important to note that in either mode I or

mode II if < is an eigenvalue, so is -K.. This is very

S-. important for the formulation of the generalized influence

I p function method, where use is made of the eigenfunctions

corresponding to these negative eigenvalues. The negative

* ." roots yield unbounded displacements at the vertex of the

S--angle, so they do not have physical significance.

Expressions for the displacements

Mode I

i -- By taking C2 - 1 and calling the ratio C4/C2 - C in

S.. (3.102) we can write:

1 [ F(e) - cos(K+l)e + Ccos(K-l)e (3.108)

°Io,

................-.
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a."

hold simultaneously. Excluding the meaningless case of

a = 0, these are satisfied either when:

a = 90* and K = n (half plane) (3.105)

or:

a = 1800 and K - (crack case) (3.106)2"

with n = integer.

In the case of the half plane C1 - 0 and C3 is undetermined.

The triviality of the case K - 0 can be seen by expressing

a in terms of K. Making use of (3.50) and (3.72) we

obtain:

12 -
Cr 7 - 2 r r = r -F(e)+(K+l)F(6) (3.107)

r ae

and for K = 0 it can be verified that the expression in

the bracket becomes zero. From (3.84) and (3.85) it is

obvious that a and Tre are also zero, and from (3.82)

and (3.83) we can see that the displacements do not

depend on the radius r, therefore, we have a state of

rigid body motion. It is also of interest to note that

for the antisymmetric case (equation 3.99), the value

K= 1 is a solution for any notch angle a.

- ° . .. . o o . - o o . o. .. . . . . . . . . - . . . . .
o.o" o '•. " '% ° % - o. % .,° o°o.o. ° " o%'. . .a o" *-" .°. .°o '-".° --. ° ° -ao .,- .a-
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C3 = -sin(+i) - 1l+i)cos(<+I)a (3.100)

-o C sin(K-l) a (K-1)COS(K-I)ct

but one of them, say C1 , can be assigned arbitrarily.

Conveniently we choose C1 - 1.

Similarly the other two equations (3.96) and (3.97)

yield the eigenequation:

sin2 + sin2Kct 0. (3.101)

Again for every root of this equation at least one of C2,

•* C is nonzero. One of them can be given an arbitrary
4

value but their ratio is determined from either (3.96) or

* (3.97) as:

. C4 = cos(K+l)a - (.K+l)sinlc+l) a (3.102)

SC2  cos(K-i)a (IC-) sin(K-l) a

p
Examining equations (3.99) and (3.101) together it is

seen that they are satisfied simultaneously either in

the trivial case K - 0, or when:

sin2a - 0 (3.103)

and:

sin2a = 0 (3.104)

L, *~~.*

** . .°,.. ,*.. . ,
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-II

(K+l)C 2 sin(K+l)a +(K-1)Clsin(K-l)a = 0 (3.97)

It is then seen that the original system of four equations

in four unknowns is separated into two independent systems,

each of two equations in two unknowns. It will be seen

that (3.94) and (3.95) lead to a solution which is anti-

symmetric about the x axis and (3.96), (3.97) lead to a

solution which is symmetric about the x axis. This

separation into the symmetric and the antisymmetric terms

could have been anticipated considering the symmetry oz

the domain about the x axis. Each system is homogeneous

and for non-zero solutions to exist the determinant of

each one should vanish. The determinant of the system

(3.94), (3.95) is zero if:

(K-l) sin(K+l) acos (K-1) (- (K+l) sin (K-1) Ocos (K+l) C = 0

(3.98)

this simplifies to:

Ksin2a - sin2Kc = 0. (3.99)

For every root K of this eigenequation at least one of C1

and C3 is nonzero. The ratio C3/C1 can be determined

from either (3.94) or (3.95) as:
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substituting for FMe from (3.72) yields:

C sin (Ic+i)a+C cos (ic+i)a cCsin (i-i) a+Ccos (K-i) a =0

(3.90)

-C sin(K+l)ct+C 2cos(K+1)a-C 3sin(K-i)a+C 4cos(c-l)a =0

(3.91)

(c+l)C CcOS (i+l) a- (IC+l) Csin(ic+l) a+ (K-i)C Ccos (K-i) a

-(ic-l)C sin(ic-i)a m0 (3.92)

*(,c+l)C Ccos (i+l) a+ (IC+l) C2 sin (ic-i-) OL+ (K-i) C3 Cos (K-i) ot

+(ic-i)C 4 COS(i-l)a =0 (3.93)

By simple additions and subtractions these are easily

transformed into:

C 1 sin(.K+l)a +i C 3 sin(ic-l)ct 0 (3.94)

(,c+l)C1 COS (ic-i-) ct+ (Kc-1) C 3 c CO(c-i) a =0 (3.95)

and:

C 2 COS(K+i)ct + C 4 cos(ic-1)a 0 (3.96)
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The characteristic values of K for which the stress

function in (3.72) and consequently the displacements in

(3.82) and (3.83) provide a solution for the notch pro-

blem will be determined by the requirement that the

traction-free boundary conditions be satisfied on the

edges of the angle. Let us express a8 and Tre in

terms of K. Using (3.49), (3.50) and (3.72) we obtain:

;2X K-1i

CT = 2= (K+l)r F(e) (3.84)

arr2 1r a 2 rL + -1 =a -Kr K1F' (e) (3.85)

In order for tractions to be zero on the two faces of -

the angle, both ae and Tre must vanish there:

ne(e = + a) = 0 (3.86)

T(e + a) -0 (3.87)

from which:

F(e = + a) - 0 (3.88)

F'(e = + a) = 0 (3.89)

o..
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which leads to solutions of the form:

sinme, cosine

The general solution for G(O) will then be:

G =a cosm + a sinme (3.78)J. 2

* and this is valid for complex values of in as well.

From the relationship (3.54) between X and by equating

the powers of r we obtain:

K 1 lM (3.79)

and by equating subsequently coefficients of similar

trigonometric terms we obtain:

a 4 1 C 3  (3.80)

4a2 =-1C4 (3.81)

The expressions for the displacements now become:

-
2Gu r rK r'[(i+l) F (e) + (1-7)G (e) (3.82)

K
2Gu 8 r £-F' (e) +(1- () (X -1) G(e)J (3.83)

-:
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eigenvalues there correspond four independent eigen-

functions with a singularity of the same strength r

* "but each having its own stress intensity factor. By

using the complex form of trigonometric functions

sinK in K1 cosh K2 + i cos K 1 sinh K2 (3.143)

cos K = cos K 1 cosh K 2 - i sin K1 sinh K2 (3.144)

and substituting in (3.120), (3.121), (3.130), (3.131)

after rather lengthy but otherwise straightforward

trigonometric and algebraic transformations we obtain

the following explicit expressions for the eigenfunctions:

mode I:

4G(2r) 1/2 uI =K 1 ) r' e K [(K+3-4-Li)ci +

+ (K 2 -L 2 )s 1 - 2(cIc 3 +K 2 s3 )cose]

-K e|2
+ e 2 C(1+3-4T-L1 )c 2 - (K2 -L 2 )s 2 -

- 2(K 1 C4+K2s4)cose) (3. 145)

L
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4G (2r) 1/ K(1 ) r 1(2e [(K 1+3-4(7+L )s1

-c (+L) c 1 -2 (t c +e s )sin6J

+ e 2 (K +3-4cT+L)s 2 + (K 2 +L )c 2 +

+ 2(-K c +K s )sine)) (3.146)

1/2 ~Kl K () Kf 2 e, +-4G (27r) 1/ 2  K(2 r eL-(K 1 +--L )s 1 +

+ (K -L )c1 + 2(K S3-K C )cosej

e [Ke(K +3 -4 0-L )s2 + (K -L )c2

-2(K 1 s4+K2 c4 )CoseJ) (3.147)

1/2 (2) K1 K 2 e
4G (270) v2  K1  r(eL(K 1+3-4c+L )c +

+ (Kc+L )s1 + 2(K s -K c )sinej

-1c8
+e 2[-(K +3-4cr+L 1)c 2 + (K 2 +L 2 )S2

-2(K S -K C )sine] (3.148)
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where

' C1  costC 1e6-K 2 .nr) (3.149)

- sin(K1e6-K 2inr) (3.150)

c2 Cos(K 1e6+K 2 nr) (3.151)

s2 sin(K 18+o2 knr) (3.152)

C3 =Cos (Kc6-6-K22.nr) (3.153)

s 53 -sin(K 1 6--K 2 inr) (3.154)

c Cos(K1 e-e+K2 inr) (3.155)

54 sncee+x, Znr) (3.156)

C 1 (K 1+1)+K 2 c2
L - (3.157)

1 2
C C +K+1

L L 2  Cj 2 2K+1 (3.158)

2
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cosh2K 2cacos2a+cos2K1a

1 cosh2K2 a+cos2(I _1)(

c sinh2K 2a sin2K1 
a  (3.160)

2 cosh2K 2a+cos2( 1 -l).s

and a is given by (3.18)

mode II

_ () le 11

4G(27 ) 1/2 U K (1 e [ (3-K -4cT-L)s +

+ (K2+L 2)cI + 2(Kic 3+K 2s 3)sine]

+ e [ (3- c-4ri-L1 )s 2 - - (K 2 +L 2 )c 2 +

+ 2(K1 C4 -K 2s4 )sine]  (3.161)

4(2i/2 4() lr 2 e

4G (270 1/ = v K r e K[-( 3-K1 -4 r+L1 )c1 +

+ (K2-L2)sI + 2(-K 1c3+K 2s3 )cose
]

+ e [-(3-KI+4+LI)c2 - (K2-L2 )s2 -

2(KC 4+K 2 s4)cose) (3.162)

1 4 2.

IL.

71, %-



4G (27) 1/2 u ( .12) iK 2ce4G2r 2 = K11  r {e 2[ (3-K-4cT+L1C

, + (K 2-L 2)s I1 + 2(-K1S 3 +K2 c3 ) s i n S ]

-K e
+ e 2 [-(3-K-4(7-L)c 2 - (K 2 -L 2 )s 2 +

+ 2(K s 4 +K 2 c4)sinB]} (3.163)

1/2.. (2) K ~

4G(2-)1/ v 2  K2 r {e [(3-K 4+L s +
2 li 1

--- I

+ (K 2 -L 2 )c 1 + 2(KlS3 -K 2 C3 )CosS

-K 2
+ e [-(3-K 1 4n+L1 )s 2 + (K2 -L 2 )c2

- 2(K 1 s 4 +K2 c 4 )c Os eJ} (3.164)

where

c i and si are given by (3.149) through (3.155)

L = 1 (K1 +1) 2 2 (3.165)
1 2C1  2

[~ K- C2-C2 (Ki+i)""L2 2 1  2 (3.166)

,2 C2 + C2
1 2

C 1  C

t
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C -cosh2K 2acos2a+cos2a (3.167)
C1  cosh2K2a-cos2(K -l) a

sinh2K2 a sin2Kic a3.8
C2 - cosh2K2 1cos2( ) (3.168)

The heuristic approach that was followed in this

chapter can be justified in the framework of a very

general theory given by Kondratev [17]. He showed that

the solution of an elliptic boundary value problem in

the neighborhood of an angle can be written in the form:

u Z a. r .nq r Oi(e) + w(r, e) (3.169)

where

q = 0, ... , m. - 1

mi - the multiplicity of the eigenvalue K".

ci (e) is a smooth function

and w(r, 6) is smoother than the r 2* r terms
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It is now of interest to explore further the nature

of the roots of the eigenequations. We are only

interested in roots with a positive real part. The roots

with a negative real part are readily obtained from the

former through a simple sign reversal, due to the symmetry

of the eigenequations with respect to the x axis. They

are disregarded in the displacement expansions as they

would imply unbounded displacements at the tip. Karp and

Karal [18] have shown that there exists a nontrivial real

root which is always smaller than the positive real part

of any of the complex roots.

The smallest positive eigenvalue for mode I is given

.5 in table 3.1 for various values of the half angle a.

Table 3.2 displays the same information for mode II. We

can see that except for the crack case (a = 180 degrees),

where the eigenvalues for the two modes are the same, the

eigenvalue for mode II is always larger than the eigen-

value for mode I. When the half solid angle a is equal to

128.7268 degrees the eigenvalue for mode II is equal to 1,

therefore the stresses corresponding to mode II are bounded

at the notch tip. Under mode I conditions any reentrant

corner will give rise to singular stresses at the tip, the

critical half angle being 90 degrees (half plane). The

second and higher eigenvalues are complex for angles a

.
Io

...... .L .. .. . .. . . ... . ..... ; ... .. . .. v - , .- v .. . .-. ."- .. .....*. -..
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equal to or smaller than 157 degrees in the case of mode I,

and for angles a equal to or smaller than 164 degrees in

the case of mode II. In the case of a crack (a = 180

degrees) all the eigenvalues are real. For smaller angles

there is a finite number of real eigenvalues and an

infinite number of complex ones. Table 3.1 refers to mode

I and displays the first nine real eigenvalues for a

equal to 175 degrees together with all the real eigenvalues

for a equal to 170, 165, 160 and 158 degrees. Table 3.4

displays the corresponding results for mode II, with the

first nine real eigenvalues for a equal to 175 degrees

and all the real eigenvalues for a equal to 170 and 165

degrees.

.................... ., .
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Table 3.1

Smallest positive eigenvalue

for various solid angles, mode I

(roots of the equation Ksin2 + sin2Ka = 0)

solid angle a first eigenvalue, mode I

3600 1800 0.5

3500 1750 0.500052987126443

3400 1700 0.500426375426056

3300 1650 0.501453008713551

320 °  1600 0.503490483184783

3100 1550 0.506932842286465

3000 1500 0.512221361160512

290 °  1450 0.519854303113919

2800 1400 0.530395719129773

2700 1350 0.544483736782464

2600 1300 0.562839480481682

2500 1250 0.586278864957285

240 °  1200 0.615731059490783

2300 1150 0.652269555181627

2200 1100 0.697164972097201

2100 1050 0.751974545407642

2000 1000 0.818695851323838

1900 950 0.900043811488137

1800 900 1.
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Table 3.2

Smallest positive eigenvalue
for various solid angles, mode II

(roots of the equation Ksin2a - sin2K = 0)

solid angle a first eigenvalue, mode II

3600 1800 0.5

350a 1750 0.529354738341384

3400 1700 0.562006549619481

3300 1650 0.598191849614085

3200 1600 0.638182471293363

3100 1550 0.682294830307061

300w 1500 0.730900741512950

2900 1450 0.784440552974094

2800 1400 0.843439568929300

2700 1350 0.908529189846099

2600 1300 0.980474925453105

257.45360 128.7268a 1.

250a 1250 1.060214662528446

2400 1200 1.148912751316944

230 1150 1.248039607030766

1(40
220 359494953661662

2100 1050 1.485811706900859

2000 1000 1.630525086564494

1900 950 1.798932622346293

1800 900 2.



-91-

Table 3.3

Real eigenvalues for various solid angles, mode I

(Roots of the equation Ksin2 + sin2Kc = 0)

Solid angle a real eigenvalues, mode I

0.500052987126443

1.058842953176205

1.499727767815282

2.118822841754057

2.497979910848996
3500 1750

3.181532712089234

3.493301550223319

4.250184120916684

4.482534709491662

etc.

0.500426375426056

1.125406650991640

3400 1700 1.497613486365886

2.267186596933758

2.476769998913093

0.501453008713551

330* 1650 1.202957173241424

1.490377798463559

• o . , ,•,. •.• .• . , . . . . . , . . .*..•. , ,. . .. .... * -. ..-. -
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Table 3. 3

(continued)

solid angle Otreal eigenvalues, modeI

0.503490483184783

3200 1600 1.302693359118874

1.467008439164243

0.504675297031383

3160 1580 1.365731350131872

1. 436 28 218 3283593
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Table 3.4

Real eigenvalues for various solid angles, mode II

(Roots of the equation Ksin2a - sin2Ka = 0)

Solid angle a real eigenvalues, mode II

0.529354738341384

1.

1.588609191187519

1.999106964391621

2.649698718055999
3500 1750

2.996140969135392

3.714772677395547

3.989019694329133

4.789341976925038

4.972275638161229

etc.

0.562006549619481

1.

1.692250101505664

340" 1700 1.991384797275372

2.883886605832655

2.920169039793589

0.598191849614085

3300 1650 1.

1.838934252571961

1.948555887250050
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Figure 4. 1

Two dimensional body with a notc~h

(solid angle =2a~)
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rP

Figure 4. 2

Cartesian and polar coordinate systems

t Figure 4.3

Removal of a small disk of radius r =E
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<1  <2  "

u K1 r U1 () + K2 r U2 (e) + ... (4.1)

v- K r V (e) + K r v2 (e) + ... (4.2)

where KI, K2 are the generalized stress intensity factors and

K1 , K2 are the eigenvalues. The precise form of functions

U.(8) and V. () was derived in the previous chapter. We are

interested in compute so the generalized stress intensity

factors Ki, K2 , etc. The eigenfunctions U.(), V.(8) also

depend on the elastic constants, the half solid angle a and

the corresponding eigenvalue Ki"

We choose as extraction functions * and i the eigenfunc-

tions corresponding to the negative eigenvalue of the term,

whose amplitude is being extracted.

-2 "
r 0 01'0) + Ob (4.3) '-i

1* r (e) + 'b (4.4)

where 00) and T(e) are obtained from UI (e) and V1(e) respec-
tively if we substitute -K 1 for K1 . The terms Ob and b are

smooth functions that vanish in the neighborhood of the notch

tip and arc so chosen that the extraction functions satisfy

the following requirements:

i) They vanish on the part of the boundary where dis-

placements are specified. This is accomplished by the

addition of the smooth functions 0b and ipb, which are called

b."
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blending functions. Another way is to multiply the singular

part in 0 and * by a cut-off function, which takes the value

of unity in the neighborhood of the notch tip and the value

of zero away from it with a smooth transition in-between.

Further discussion on the cut-off and blending functions can

be found in [3].

ii) They satisfy the equilibrium equations in the

neighborhood of the notch tip. If no displacement boundary

conditions are specified on any part of the boundary, then

r they satisfy equilibrium everywhere in the domain.

iii) They satisfy the traction-free boundary conditions

on the faces of the notch, that is tractions corresponding to

displacements * and 41 vanish for e-a and 0--a.

iv) They have a singularity of the order r 1.

The equations of elasticity (plane strain) in the

Cartesian system (x,y) can be written as:

L (uv) - 0 (4.5)

L (u,v) - 0 (4.6)
y

where
v 2u +2 u

L (u,v) - (X+G) ( + 2) + G ( u + (4.7)

2y
L (u,v) (X+G) a(u +' + G 2 + -a2) (4.8)y ay~w ax y x a

°*2

p°



-99-

I,'

with X and G being Lame's constants. We now multiply

equation (4.5) by * and integrate over the domain. Similarly,

we multiply equation (4.6) by *, integrate over the domain

and add the resulting equations to obtain:

[Lu(uv)o + L (u,v)p]dA = 0. (4.9)
A Yu-"

Integrating twice by parts, as explained in Chapter 2, we

obtain:

S [Lx (0,4)u + L (O,W)v]dA- [T (O,W)u + T (O,iP)v]ds

r+r "

+ CTx(u,v), + T (u,v),Jds = 0 (4.10)

r+r

where:

Tlu,v) 2 + v ( Lu- nv + 2unxx a x a x  3 ny

+ G( 2 nx + 1 ny) (4.11)
ax x ax y

au av+G va
T (u,v) L-( + 2) n + G( 2- n + i n

y ax ay y ax x ay y

+ G( 2 n +v ny) (4.12)

are the tractions corresponding to displacements (u,v)

and n=(nx,ny) is the outward normal to the surface. In

I"
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the case where only tractions are specified on the boundary

the area integral-in (4.10) vanishes, since the extraction

functions satisfy equilibrium everywhere, and equation

(4.10) becomes:

-- E[TX (0, )u + T (0, )vlds + [T (u'v)
, r~r r~r

+ T (u,v)*]ds = 0 (4.13)
yr

The integration will be performed separately on the

circular arc r and the rest of the boundary r. On the

part of the boundary, where tractions are specified,

Tx (u,v) and Ty (u,v) are known:

T (u,V) = R (4.14)x

T (uv) -Y (4.15)y

On the part of the boundary, were displacements are speci-

• i fied, * and * vanish. The second integral in (4.13)

evaluated around the contour r can then be written:

[T (uv)o + T (u,v)'pIds - (O+ 7p) ds (4.16)Sx y
r r

oK

*, m -. "o o ° " - " - " . " , .-o . - - ,. ..*. ~ * . . . . .r . W . fl L
.,"." ,.- .-.. ..-,, .- ,. ,.....,..'.., .. ,....., ., .. ":, .-... : ..-. :.-...-.:.. .. .,.,.,.- .,-..-.,-. -. ,. -. ,....-...., .. e --".,",. -,.. .-----. . ._, ,
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This integral can be evaluated numerically from the data of

the problem. The integration around the circular arc

yields an expression of the required stress intensity

factor. On this arc r the displacements u and v are given

by equations (4.1) and (4.2). Their derivatives will be of

the form:

= K1 r U (8) + K2 U2x(e) + ... (4.17)

~U. KrK 1+ K -1 . (.8au K- I  
2-

1
1 r Ul(8) + K2 r U2 y() + ... (4.18)

av 2i-  2 -  (e) + (4.19)
7x K 1 r V lx(8) + K 2r V2x....

2 K1 rK Vl(8) + K2 r V2y (8) + (4.20)
ay 1 ~ly 22

In view of (4.11) and (4.12) and the fact that on the

circular arc r C the outward normal n has components

nx = -cos 8 (4.21)

n - -sin 6 (4.22)
y

the tractions T (u,v) and T (u,v) can be written in the

form:

T (u,v) = K r 1  T(8) + ...(4.23)
x 1 Txie + 2 rx2(e

h.
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:1-1 K -1
Ty (u,V) = K1 r Ty1 (e) + K2 r 2 Ty2 (e) + ...(4.24)

." By noting that on r

ds - r d6 (4.25)

we can write the second integral in (4.13) around r in

the form:

S[T x(uv) + Ty (u,v)p]ds = K1 M1 + K2 M2 (r)

+ K3 M3(r) + K4 M 4(r) (4.26)
4 4

where

M 1  _[TX1l(e) O(e) + Tyl(0) (6)]de (4.27)

SM 2 (r) - r 1 2  T (e) O(e) + T 2 (8) 1(e)]de

(4.28)

M 3 (r) - [Txl(e)¢b + Tyl( )b]de (4.29)

K a<

M 4 (r)- r C [T 2 (6)Ob + Ty2(e)b]de (4.30)

The higher order terms are disregarded in what follows,
since two terms are sufficient for the discussion of all

the relevant issues. We now observe that M is independent

.:-,-:s.'-,':,, .. -:-,'. -..,--4.--.-, ..,.:.:.-..;.-.....-.--...-.,.-.--.,:..-.........-.......-.....-.....-.................-..... .....
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of the radius r. This is the reason that the extraction

functions are chosen as the eigenfunctions corresponding

to the negative eigenvalue -KI" Otherwise M1 would also

depend on r. It can be seen that M3 (r) and M4 (r) vanish

as r approaches zero.

In view of (4.3) and (4.4) the derivatives of the

extraction functions can be written in the form:

= r 1 ( e ) + b (4.31)
axx bx

= r lD (8) + (4.32)
y y by

ax x (' ) + 'bx

a_ I. r- - 1 4.4

ay ry(6) + 1by (4.34)

where 0b2' Oby' *bx' 'by are again smooth functions. The

tractions. corresponding to displacements and p can be

written in the form:

Tx (r,) - r X (6) + Xb (4.35)

Ty(.,") - r y (8) + Yb (4.36)

with Xb and Yb being again smooth functions. The first

integral around r' in (4.13) can then be written as:
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6 [Tx(0,, )u + T (0,)vlds = K M + K M6(r)
r' x y1 5 2 M 6(r

+ K2 M7 (r) + K2 M8 (r) (4.37)

I

where:

M 5  X (8) U1 (e) + Ye(8) V1 (e) ]de (4.38)

M6 = r 2 + YK(1) V2 () ]do

(4.39)

M7 (r) - r UI() + Yb Vl(e)]de (4.40)

K2 +1 CLs
M8 (r) - r L [X b U2 (e) + Yb V2(8)]de (4.41)

We observe that expression M5 is also indpenedent of r.

The choice of the extractions functions * and t as the
eigenfunctions corresponding to the negative eigenvalue -K 1

makes both M5 and M6 independent of r. Since Xb and Yb

are smooth functions, expressions M7 (r) and M8 (r)-vanish in

the limit as r approaches zero. Expressions M2 (r) and

M6 (rl require further consideration. In the case where <

is the first eigenvalue, that is K 1 < K 2 P then the quantity

(- 1 +K 2 ) is positive and both M2 (r) and M6 (r) vanish as r

- - , . , • . p , - . • . - . -.* *- ° • . - . h . ; , .'.b , * . . " .. .".°-. ."." . - % . .%
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tends to zero. However, if a higher order stress intensity

factor is extracted, say K2, the exponent of r in expres-

sions M2 (r) and M6 (r) will be negative. These expressions

then become unbounded as r tends to zero, unless the

integrals with respect to e vanish. It will now be shown

that they indeed vanish.

Consider the body shown in figure (4.4), which is

bounded by the straight segments r 2, r'4 on the faces of

the notch angle and the circular arcs F1, F3 of epicentral

angle 2a centered at the notch tip. Applying equation

(4.13) for this body with u, v as the second terms of (4.1)

and (4.2) respectively and *, p as the singular terms of
(4.3) and (4.4) we obtain:

-1 2
r [X (6) U2 (e) + Y (e) V2 (e)]rde

F IF

+ r [T x2 (e) (e) + Ty2 (e)T(e)]rde = 0

r +F3  (4.42)

Both integrals vanish on the straight segments F2, F4

because the traction components Tx2 , TN2 corresponding to

the eigenfunctions, as well as the tractions components

X , Y corresponding to the extraction functions vanish

on the faces of the angle.

,, ,.....:..,'.. '.' .... ' .,......................'.'.'........................-.. ................. ... -.. -
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We now consider a larger annular sector with the same

inside diameter but a larger outside diameter, where the
* 

.

arc F3 is replaced by r3 . We then have:

r [x(6)U2 (6) + y (e)v2 (e)]rde
*

r +r .i..

+ r 1 [Tx2(e)(e) + Ty2)(e)'(Oe]rde =0

r +r3  (4.43)

Therefore:

- r 2 1 [x (6)U 2 (e) + Y (e)v2 (e)rde

3

+ r12 [T x2 (e)(e) + Ty2( e)(e)]rde

£3

-K+l 2"1
-- r 1x()U 2 (a) + Y (8)V2 (e)rd6

r *3'.

3~ 2.

+ r [T x2(6)D(8) + Ty2(e)(e)]rde(4.44)

r3*

- . . . . . . . . . . . . . ... -. ' - ---.- . . . - -._ -, -.- -.-. .--. . ..' .' ' .-.-.-, ---.-3 -.-. -.• . ---. ' .' " .' -, ----"
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2C G (2Tr) 1/2 au= K r K KE (c B-K -1) COS(K -1)~ -

-2K 1c COSeCOS(K1-2)e +

+ 2C sinesin(K -2)e) (5.18)

2C G(27T)~' 1/ au K r K K[-(C B-K 1 -1)sin(K -1)e +
7yI

+ 2C (K I-1)cosesin(K I-2)e] (5.19)

1/2 __ II 1
2C IG (27r) a K IrK- K E(c IB+K I+1)sil(KI- 1)e

- 2C sinecos(K -2)e]. (5.20)

1/ IvIK1

2C IG (21T) 1 ~ a K I r K I[Pc IB+K I+1)cos(KI- 1)e +-

+ 2K Ic Isinesin(K 1-2)e-

-2C cosecos(K, -2)6] (5.21)
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Subscripts I and II refer to modes I and II respectively.

The stresses in the Cartesian system (x, y) can be

expressed through the transformation formulas:

(x= (r cos 2e + aT sin 2e - 2 Tr6 sine cose (5.13)

(,y = (r sin 2 + e cos 2e + 2 Tr6 sine cose (5.14)

2 2
=(T r(e )csine cose + T (Cos e-sin 2) (5.15)Txy =(r-sin cos re

The edges of the notch are free from tractions with

stresses a e and Tre being zero there. On any other plane

through the body with an outward normal n = (nx , n ) the

tractions are given in terms of stresses through the

transformation law:

T x cosa + T sin (5.16)x xy

a Cy sina + Txy cosa (5.17)

An alternative way of obtaining expressions for the

tractions is to obtain first the derivatives of the

displacements and then express the tractions in terms of

these derivatives as follows:

....d...* '''.....''''-~. %' . " . :'' ." -Z.." ". . ..•..-.. ..'. ' .. , " . .. . ' .' - ' . .' . " . . . " .



IcI

-119- Z

1/-1
C1 (2wr) 1/2 r I 1 (K +1)sin (K+1)e +

+ c (K 1 -1)sin (K 1 1 (5.7)

C (27 1 re T K r [K (K +1)sin(K+1)e +

+ C K ( 3) s in (K 1 ) e] (5.8)

C (2) 1/2 KII  "(K +1)sin(K+1)6 +

+ C sin(K -1)6) (5.9)

II II

1/2KC (27) TrI -K 1  r K (K11CO K+1)6e +

+ C (K 1 -3)Os(K i)] (5.10)

where

lCO ((K +1)) (K +1)snn(K +1)a"
I I

+( Ciisin( I- 1)] (5.91)-

-- sin(K11 +1)cL (K 1 1+1)COS(K 1 1 +1)a

CII 12) 1/2(5.12)

IreII - (K 1)COS(K 1 5T)cs
J°

J

+ Cz (Kii-l CO ( Z-1 e] 5.11 .5
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2GC 1/ I 2=) u K Ir '[(Ci B-K I-1)COSK 1e -

2GC I(27r) 1/ VrK1  I BKI 1sin1

+ 2K C1 cIsecos( ( -18] )6 (5.1)

2K 1 Icecsici-1e 54

K 1 1

2(21r) 1/2 = Ii r [CBK+)Ifl I8

+ 2 K C sKI-n3cos(K -1)] (5.2)

2c 1 (20r 1/2 CYe - K 1 1 r [(Kc 1 )[D-K11 -1ne 1 +

+ I 2COS(C I-O1eCO( 11 18 (5.4)
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5. THE MODEL PROBLEM

The numerical performance of the extraction method

will now be established through numerical experiments

based on a model problem. The model problem contains a

reentrant corner and a solution is selected which satis-

fies (1) the Navier equations and (2) the boundary

conditions at the reentrant corner. On the other

boundaries the tractions corresponding to the exact solution

are specified. In this way the exact solution has the

main characteristics of typical practical problems (i.e.

ones with reentrant corners). It is therefore suitable

for benchmark studies. No problem with reentrant corners

and possessing an exact solution has been reported in the

literature. In all the reported solutions a numerical

approximation is made at some stage, in which the error

is unknown. Thus precise convergence studies cannot be

performed.

Let us consider the two-dimensional domain of

infinite dimensions with a notch of total solid angle

equal to 2a. As. it was explained in Chapter 3 the stress

and deformation fields are given by series expansions in

which the typical terms are as follows:



V- -116-

The same will happen when more terms are kept in the

expansion. Equation (4.76) then reduces to:

- [Tx(o,1)U + T (0,)v]ds + [Tx(u,v)* +

r r

4
+ T (u,v)W]ds =El K. N (4.82)

yi i

The other terms in equation (4.13) are not affected and

the analogous equation of (4.50) is now:

Z K N = Xds + Y~ds [Tx(OP)u +

r r r

+ T (O,iP)v]ds (4.83)
y

By choosing in turn the extraction functions to be the

eigenfunctions with the negative eigenvalue -K 1 and

corresponding to the eigenfunctions that have as stress

intensity factors the constants K2, K3, K4 respectively

in equations (4.54), (4.55), we obtain three more equations

of the same form. We have then a system of four equations
L

in four unknowns to determine K1, K2, K3, and K4 .

.- ~



where:

4
Mu EZ K. Nj (4.77)

N..- I h~(e) de (4.78)
1) J-c

We have shown that the integral in (4.78) must be indepen-

dent of r. Since the functions c(r), s(r), c (r), s (r)

are linearly independent, this can happen only if:

M2 ftM3 = M4 = M5 = 0 (4.79)

So far only one term in the expansion has been considered.

The inclusion of further terms will give rise to an

expression of the form:

m 1 + c(r)M2 + s(r)M3 + c 1 (r)M 4 + S 1 (r)M 5

(3 3 3 3
+ r c(r)M 6 + r s(r)M7 + r c1 (r)M, + r s1 (r)M 9

(4.80)

as the right-hand-side of (4.76). it can be shown that

the new functions of r (c, s, c1, sl' r 3s i

are also linearly independent. Thus expression (4.79) can

be independent of r only if:

M~ - 0 i m2, .. ,9 (4.81)

%1
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I- F.(r, e) = gli(e) + c(r) g2 i(e) + s(r) g3i(e)

+ c1 (r) g4i(e) + sl(r) g5 i(e) (4.73)

S

where now c(r), s(r), cl (r), sl (r) are functions of r that

are linearly independent. The other three products

T (u,v)Wds, T (0,*)xds and T (0,)vds are of the same
y x y
form and we can write for the contour r

- Tx (0,*)u + Ty (0,*,v]ds + [Tx(u,v)o + Ty (uv)p]ds

4

- E K i H. (r,e)dO (4.74)* i~l11

where:
5-

Hi(r,6) -hli (e) + c(r)h 21 () + s(r)h 3i (e) +

+ cl(r)h4i(6) + s1 (r)h5i (e) (4.75)

Integrating:

- _ ETx(O,P)u+Ty(o,i)v]ds + l[Tx(n,v)O+Ty (u,v)Wds -

m + c(r)M2 + s(r)M 3 + cl(r)M4 + sl(r)M5  (4.76)

I1

"I- " '' ' 'i . '1.: '-: -., . . -"--: -'.: .-,': .-',' .ri ' ' . . . . . . -".-----, , . , .- . . . . -
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4
T x(u,v)ods = Z K. F (r,e)de (4.66)x ii 1 1"

where

Fi(r,e) -Gi(e) + c(r)G 2 i(e) + s(r)G3 i(e) +

+ c 2(r)G4 i(e) + s2 (r)G5i(e) + c(r)s(r)G6i(6)

(4.67)

By denoting:

Cl(r) - cos(2K2Lnr) (4.68)

sl(r) - sin(2 2 knr) (4.69)

we can write:

c 2(r) = cos2 ( 2 tnr) 1 [ [c(r)-l (4.70)

2 21

s2 (r) - sin2 ( 2 Lnr) c [c1 r)+1 (4.71)

c(r) s(r) - coS(K 2 nr)sin(K2tnr) ( . S1(r) (4.72)

and rearrange (4.67) to obtain:
: .,

7e-J

€°7

.'

I "~ ~
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Tx (u,v) - r K1CTxll (e) c(r)Tx 12 (e)4+s(r)Tx 1 3 (e)] +

+ r K2 [T x21(e)+c(r)Tx 2 2 (e)4 s(r)Tx23 (e)]

+ r 1 K3[T x31()+cr)Tx32(6)+s(r)Tx33(e) ] +

+ r K4 CTx 41 (e)+c(r)Tx42 (e)+s(r)Tx43 (0)] (4.62)

T y(u,x) - r 1  K1 [Ty 4 (e)+c(r)Ty1 2 (e)+s(r)Tyl 3 (e) ] +

K 1- 1
+ r K 2 [Ty 21 (e) +c(r)Ty 22 (e)+s(r)Ty23 (e)]

U
+ r 1 K3[T y31()+c(r)T y32(e)+s(r)T y33(e)] +

+ r1-r K4 T 4 1(6)+c(r)T 4 2 (e)+s(r)T4 3 (e)] (4.63)

Tx(,,) x r 1 [Xl(6) + c(r) X2 (e) + s(r) X3 (e)](4.64)

o. -K1-l-. T 1,,p) - r [YI(e) + c(r) Y2 (e) + s(r) Y3 (e)](4.65)

We are now in a position to evaluate the integrals

appearing in (4.13) around the circular arc r . The

hr product T (u,v)ods can be written as:

oq
o
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+ r K3 [V3 1 (e) + clr) V3 2 (e) + s(r) V3 3 (e)) +

<1 
'

+ r K4 EV4 1 (6) + c(r) V4 2 (8) + s(r) V4 3 (e)]

(4.55)

where:

c(r) - cos (K2 Mir) (4.56)

s(r) = sin (K2 Lnr) (4.57)

The corresponding extraction functions for extracting K

are:

-K
* = r 1€11() + c(r) 62(G) + s(r) 03(6)] (4.58)

S-- r -['T l(e) + c(r) T 2(e) + s(r) T 3(e)] (4.59)

Since

,°-

[ Lcos(K 2 Znr)] - K2 r l sin(K2Lnr) (4.60)

.2 J K r -  COS(K Znr) (4.61)
thcrrsping ractio2 cn b2 

the corresponding tractions can be written in the form:
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As it was explained in the previous chapter, to the posi-

tive real part there correspond four independent eigen-

functions, each with its own stress intensity factor and a

singularity of the order r .The smooth part also

* contains terms of the form:

sin (K 2 nr), cos(K 2 Lnr) (4.53)

which means that the eigenfunctions can be written in

the form:

U r K 1EU1 (e) + c(r) U12(e) + s(r) U13 (e)] +

+ r K1 K 2 EU 21 (e) + c(r) U 22 (6) + S(r) U 23 (e)]

K
+ r K3 [U31 (e) + c(r) U32 (e) + s(r) U33 (e) +

K1
+ r 1 K4 Eu 4 1 (e) + c(r) U 42 (6) + s(r) U 43(e)]

(4.54)

K 1

v =r K 1 V 1 (6) + c(r) V 12(6) + s(r) V 1(e)] +

K
+ r 1K 2[V 21(e) + C(r) V22(e) + s(r) v 23 (e)]
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Equation (4.13) then becomes:

KI(- M2+M 5) + ds - (Of)u +
r r r

+ T (0,)v]ds (4.50)

y

When displacements are prescribed on some part of the

boundary, the area integral is also present and (4.50)

becomes:

KI(-MI+M5) [L x + L (0,)v]dA +

+ Xods + Y*ds [Tx(,W)x + T (o,W)v]ds

r ir r (4.51)

In order to obtain an approximation to K1 we substitute in

(4.50) or (4.51) u - uFE and v - VFE.

The case of complex eigenvalues:

Let us now consider the case of a pair of complex conjugate

eigenvalues in the form:

2 + i K (4.52)

.. 1 2

F:" .. . . .. - -, . - . . .. .~ .... .. . . . .
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or:

-M2 1r 3 ) + M6 (r 3 ) = -M21 r 3 ) + M6 (r 3 ) (4.45)
.. 2*

where r3 is the radius of the arc r3 and r3 is the radius
,%" *

of the arc r3  This means that the expression (-M2 +M 6 )

takes the same value for any value of the radius r. By

writing this expression in the form:

-M2 + M 6 m r 1 F(e)de - r C (4.46)

it is obvious that this can be independent of r only if

the integral is zero (the eigenvalues K1l, K 2 are distinct),

i therefore:

-M + M6  0 (4.47)

When more terms are kept in the asymptotic expansion the

corresponding expression will be:

-M +M - 1+ 2 C+r-K 1+K 3 - 1+ 42 6 2  3 4

(4.48)

- where the eigenvalues K 2, c3' K 4 are all different from KlI

This expression can be independent of r only if:

C C C =0 (4.49)

consequently, we obtain again equation (4.47).

y
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snK 1)e+2C (

2C G (27r) 1/2 au-iK r K K PC -1)

-. sin(K 2-)6 + 2C C1(K11-12)6

sineos(c11-)e)(5.22)

2C G (27r) 1/2 11= K [-(c KECDK -1)

cos(K ,1) e - 2K 1c c 1 se

sinS(K 11-2)e + 2CI csecs(K i- 2)e)

* (5. 23)
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-K -1
II KII r IIII(CIID+<II+I)

sin(K11 -l)e + 2Ci( iI 1)cose

sin (Ki-2) e] (5.25)

au I  av I  'uI  avI
x= (X+2G) x nx + X -- n + G( - + )n

(5.26)

avI  auI  u v
= (X+2G) - ny + X n + G(

(5.27)

aui avi aui Dvi

xiI = (X+2G) 11 nx + X -7-- n + G( -+ )ny

(5.28)

avi aui aui aviI''

Y = (X+2G) - ny + x 1 n + G( 11 + )n

(5.29)

Let us now cut out from the infinite domain a body

of finite dimensions which contains the notch, but is

otherwise arbitrary. If we apply to this body the

tractions specified by (5.26) to (5.29), then the state.

of stress and deformation will be given by (5.1) to '-

(5.10) in accordance with the uniqueness theorem of

elasticity. Since the body was in equilibrium when

embedded in the infinite domain, it must be in equilibrium

"" -"°- • -...........-........-......-... . . . . . .
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under the tractions on the cut-out surface. When these

tractions are then applied as external Loading, this

loading is self-equilibrating. The displacement boundary

conditions that have to be enforced are then the ones

necessary to prevent rigid body motions. in the problems

that we analyzed we chose to fix both displacements'at

the notch tip and the u displacement at the upper right

corner.

We can then predetermine the singular elastic field

tthat exists throughout the body by arbitrarily choosing

the generalized stress-intensity factors. The applied

tractions necessary to induce this field are then given

3 by (5.26) to (5.29). Any number of terms can be retained

in the expansion. Thus we can create problems for which

the exact values of the generalized stress intensity

P factors of any order are known. in the problems studied

herein only the first terms in the expansions were kept

*and the stress intensity factors KIand K 1were chosen

K to have an exact value of unity. The combined loads

corresponding to mode I and mode 11 were applied in each

case. Three problems were analyzed with a total solid

I - angle of 360, 330 and 270 degrees respectively as shown

in figures 5.1, 5.2, 5.3. The last case is one that

* occurs very frequently in practice representing a right

angle cut-out (L-shaped domain). The results are listed
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Figure 5.1

Element mesh for model problem with a solid angle of 3600
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152

Figure 5. 2

Element mesh for model problem with a solid angle of 3300
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Figure 5. 3

Element mesh for model problem with a solid angle of 2700
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* in tables 5.1, 5.2, 5.3 and are shown graphically in

figures 5.4 through 5.12. The theoretically predicted

rates of convergence are also shown in the figures. The

rate of convergence in energy is equal to twice the

smallest eigenvalue, which is the first mode I eigenvalue.

For the stress intensity factors the theoretical rate of

convergence is equal to twice the corresponding eigenvalue,

since the tractions corresponding to mode II have no

influence on the mode I stress intensity factor and vice

versa. It can be seen from the figures that the theore-

tical rates of convergence are verified numerically and

even for the coarse mesh chosen a relatively small number

* of degrees of freedom is required to give answers within

required engineering accuracy (usually 1 to 5 percent).

S..

L
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Figure 5.4

Energy convergence for model problem of Figure 5.1

(solid angle = 3600)



-133-

100 * . * * * .

z
Lal 50--

LU

0

LUJ

LUI

z
5

04

U

10 50 100 500 1000
NUMBER OF DEGREES OF FREEDOM

Figure 5. 5

Energy convergence for model problem of Figure 5.2

(solid angle -3300)
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Convergence of K for model problem of Figure 5.1

(solid angle - 3600)
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vicinity of reentrant corners and therefore can be

utilized in research in the area of crack initiation.

Direct methods for stress computation, whether based on

the finite element method of other numerical methods,

have the disadvantage that in the vicinity of singular

points they incur large errors, therefore they are not

well suited for correlation between experimental and

analytical data. In order to realize the full benefits

of the extraction method, extensive experimentation must

be performed with the goal to determine relationships

between elastic stress field parameters and failure

initiation events. Preliminary experiments with brittle

epoxy resin specimens were conducted. Monotonicity was

found to exist between the stress intensity factor and

failure initiation for a wide range of solid angles. Once -

theories of failure initiation, based on elastic stress

field parameters, are developed and proven the extration

method presented herein will provide a basis for the design,

analysis and certification of structures with geometric

singularities.

7,

•. 4

-I
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7. SUMMARY AND CONCLUSIONS

The generalized influence function method for the

extraction of stress intensity factors in plane elasti-

city was evaluated from the point of view of its potential

utility in engineering applications. The method was

implemented and applied in conjunction with the p-version

of the finite element method. The method yields the

amplitudes of all terms in the asymptotic expansion of

the linear elastic field in the neighborhood of sharp

corners and/or sudden changes in boundary conditions.

In this investigation only reentrant corners with free-

free boundary conditions were considered.

A model problem for which the exact solution is

known was used to test the implementation and for

evaluating the method. Convergence studies were performed

and the theoretically predicted rates of convergence were

verified numerically. The method was found to be accurate

and reliable. Even with coarse meshes and relatively small

number of degrees of freedom, it was possible to compute

the stress intensity factors to within a few percent rela-

tive error.

The engineering importance of the extraction method

presented herein is that it provides good qualitative

and quantitative understanding of the stress field in the

... -.-...... . - -:v. .c.,..- =.- .' .. . . -...-. . . ... ..... ........ . .. .... -.
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Table 6.31

Results of experiments

First Specizmn dimensions (,m-) jComputed L*
Solid Eigenvalue Failure
Angle (0) Specimen Width Ligament Thickness Load (N) (P m1-)

360 0.5 2.5 38.1 28.4 3.2 657 0.805

1.5 38.1 28.6 3.3 804 0.849

1.6 38.1 28.6 3.3 824 0.882
330 °  0.5015

2.1 38.1 28.6 3.3 785 0.839

4+ 31.3 22.2 3.2 647 0.863

3.4 38.1 28.7 3.3 1491 1.645

3000 0.5122 3.5 38.1 28.7 3.3 1549 1.724

4.1 38.1 28.7 3.3 1461 1.614

3.1 38.1 26.7 3.3 1451 1.955

2704 0.5445 3.2 38.1 26.7 3.3 1383 1.841

3.3 38.1 26.7 3.3 1461 1.968

4.2 38.1 29.0 3.3 1648 2.602

240* 0.6157 4.3 38.1 29.0 3.3 1608 2.530

4.4 38.1 29.0 3.3 1589 2.509

1.1 38.1 28.2 3.3 3452 9.073

1.2 38.1 28.2 3.3 3364 8.800
21011 0.7520

1.3 38.1 28.2 3.3 3609 9.463

4.5 38.1 28.2 3.2 3383 9.315
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Figure 6.2

Typical test specimen
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Eighteen speciments were tested, a typical specimen

is shown in figure 6.2. The dimensions of the specimens,

the failure load and the stress intensity factors at

failure (K1) are given in Table 6.1. The dimension of

KI depends on the strength of the singularity, which is

the corresponding eigenvalue. Due to the brittleness of

the material, the failure initiation and failure events

occured at virtually the same load level. The experimental

results are plotted in figure 6.3. Monotonicity of the

critical value of the generalized stress intensity factor

K is observed. It is hoped that future experimental work

will establish precise failure initiation criteria in

terms of generalized stress intensity factors and clarify

their range of applicability.
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Figure 6. 11

Experimental arrangement
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* the range of solid angles within which the hypothesis is

valid. in the context "valid" is meant in the sense:

"sufficiently accurate for the purpose of predicting

crack initiation in practical applications".

This is one of several possible hypotheses. An

extensive amount of experimental work is required in order

to identify the minimum number (and kind) of material

parameters that need to be measured in order to be able

to predict crack initiation events with about the same

accuracy and reliability that crack extension is pre-

dictable today. The ability to compute with high accuracy

the elastic stress field parameters for any sharp notch

configuration allows alternate hypotheses to be made and

makes this a very promising research area.

The material used for the experiments was a two

U component epoxy system: 83 percent Shell Epon 828 resin,

17 percent Shell Epon curing agent Z. Modulus of elasti-

city of this material was 4.3 GPa and Poisson's ratio

* 0.3P-0.39 (based on ultrasonic measurements). The resin

was cured 24 hours at room temperature and 12 hours at

65 degrees Cel,%ius. The equipment was an INSTRON testing

machine with a 500 kgf load cell. The test arrangement

is shown in figure 6.1.
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6. PRELIMINARY EXPERIMENTS

A number of preliminary experiments were performed

in order to obtain baseline data for the hypothesis that,

in the case of sharp reentrant corners, crack initiation

is controlled by the intensity of the stress singular

term.

This hypothesis implies that crack extension and

crack initiation are not fundamentally different phenomena;

both events can be correlated with the intensity of the

stress singular term at the reentrant corner, provided

that the solid angle is not much smaller than 360 degrees.

Of course, it is very likely that, in the case of smaller

solid angles, the intensities of the higher order terms

-' may also have to be considered.

Assuming this hypothesis to be valid, one would

expect the intensity of the stress singular term at

failure initiation to be some monotonic function of the

solid angle. Of course, monotonicity itself is not

sufficient evidence that the hypothesis is valid. A number

of carefully designed experiments involving various stress

fields must be performed and the outcome (i.e. the crack

initiation event) successfully predicted from baseline

data, representing critical material stress intensities,

in order to establish the validity of the hypothesis and

bd
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